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Abstract

Dynamic multi-objective optimization problems (DMOPs) are multi-objective optimization prob-
lems in which at least one objective and/or related parameter vary over time. The challenge of
solving DMOPs is to efficiently and accurately track the true Pareto-optimal set when the en-
vironment undergoes changes. However, many existing prediction-based methods overlook the
distinct individual movement directions and the available information in the objective space,
leading to biased predictions and misleading the subsequent search process. To address this is-
sue, this paper proposes a prediction method called IMDMOEA, which relies on cluster center
points and induced mutation. Specifically, employing linear prediction methods based on cluster
center points in the decision space enables the algorithm to rapidly capture the population’s evo-
lutionary direction and distributional shape. Additionally, to enhance the algorithm’s adaptabil-
ity to significant environmental changes, the induced mutation strategy corrects the population’s
evolutionary direction by selecting promising individuals for mutation based on the predicted
result of the Pareto front in the objective space. These two complementary strategies enable the
algorithm to respond faster and more effectively to environmental changes. Finally, the proposed
algorithm is evaluated using the JY, dMOP, FDA, and F test suites. The experimental results
demonstrate that IMDMOEA competes favorably with other state-of-the-art algorithms.

Keywords: Dynamic multi-objective optimization, Evolutionary algorithms, Multi-objective
optimization problems, Prediction-based reaction

1. Introduction

Multi-objective optimization problems (MOPs) are optimization problems that involve two
or more conflicting objectives. Among them, dynamic multi-objective optimization problems
(DMOPs) are a specific type of MOP where the objective function and parameters undergo
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changes over time [1]. Considering the time variation is crucial in numerous practical opti-
mization problems, including motion planning for intelligent robots [2], intelligent scheduling
for online car-hailing services [3], scheduling strategies for manufacturing systems [4], and me-
chanical structure design [5], the study of DMOPs can better address real-life practical problems.

Many optimization algorithms have been proposed, such as NSGAII [6], MOEA/D [7],
SPEA2 [8] and RM-MEDA [9]. These algorithms, known as multi-objective evolutionary al-
gorithms (MOEAs), are primarily designed to handle static MOPs, which are characterized by
a given time budget and a stable nature. However, they require enhancements to e� ectively
tackle the inherent uncertainty in DMOPs. Dynamic multi-objective evolutionary algorithms
(DMOEAs) need to have e� cient convergence ability to track a changing Pareto-optimal set
(POS) or Pareto-optimal front (POF) [10]. Many studies address DMOPs by extending the dy-
namic response mechanism based on traditional static MOEAs. Fig. 1 shows a typical dynamic
multi-objective optimization framework.

Fig. 1. General framework of DMOEAs

The common dynamic response mechanisms in DMOEAs include diversity maintenance,
prediction of the new POS/POF, memory retrieval and machine learning-based approaches [11,
12]. The response mechanism based on increasing diversity explores the solution space by adding
new individuals. For instance, DNSGA2 [6] increases population diversity through a response
strategy that involves randomly generating new solutions and mutating existing solutions. Pre-
diction strategies aim to �nd regularities in continuously changing environments to guide the
evolutionary direction of the population [13–15]. However, due to the lack of historical infor-
mation in the early stage, the prediction-based strategy is di� cult to converge fast. Additionally,
solving nonlinear problems poses a challenge for prediction-based strategies. The memory-based
response strategy addresses environmental changes by identifying the most suitable solution from
existing solutions for the new environment [16–18]. This strategy works well for problems with
periodic changes but is limited to the initial stages of environmental change and non-periodic
changes. Many researchers have explored response strategies that combine prediction and mem-
ory [19, 20]. Combining prediction and memory strategies can improve the algorithm's speed
in dealing with periodic problems. However, it still cannot e� ectively deal with non-periodic
and nonlinear problems. Machine learning-based approaches [21, 22] train predictive models by
extracting information from historical environments, which can continuously respond to envi-
ronmental changes. However, this approach requires much historical information upfront, and
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the trained model is di� cult to generalize to other multi-objective optimization problems.
In summary, much research on DMOPs tackles two main challenges. First, the use of

learning-model based prediction methods often results in slower algorithmic responses. Sec-
ond, DMOEAs assume environmental changes follow a regular pattern, which makes it di� cult
to respond e� ectively to random or drastic changes in the POS. Additionally, considering that
convergence and distribution are essential criteria for evaluating DMOEAs [23], �nding solu-
tions with excellent distribution is also a challenge of DMOEAs. Therefore, there is an urgent
need for a DMOEA that can conserve computational resources and achieve fast and accurate
predictions.

This paper proposes a dynamic multi-objective optimization algorithm based on cluster cen-
ter point prediction and induced mutation called IMDMOEA. We design a prediction method
based on the cluster center point to speed up the algorithm's response to environmental changes
and maintain the population's distributional nature. The predictor can predict the evolution-
ary direction of the population based on the evolutionary direction of the cluster center point,
while the POS manifold of the population can be predicted by using multiple cluster center
points. Furthermore, an induced mutation strategy enhances the algorithm's ability to cope with
drastic environmental changes. This strategy corrects the population's evolutionary direction
when the traditional prediction method fails due to drastic environmental changes. By predicting
the regions in the objective space where POF may emerge, the algorithm explores the decision
space and selects individuals for mutation. This approach e� ectively addresses the limitations of
prediction-based MOEAs in dealing with nonlinear and non-periodic problems.

The speci�c technical contributions of this paper are as follows:

(1) The prediction method proposed in this paper utilizes the cluster center points to estimate
the population's evolutionary direction and the manifold of the POS at the next iteration.
It achieves this by employing a �rst-order di� erential linear prediction model for mul-
tiple cluster center points within the population. This prediction method maintains the
algorithm's convergence and the population's diversity in the absence of historical infor-
mation.

(2) The proposed gradient sequence sampling method for generating exploration populations
can e� ectively cope with small and drastic environmental changes. It also achieves the
goal of e� ciently exploring the decision space of DMOPs while conserving computa-
tional resources.

(3) The proposed induced mutation strategy aims to correct the direction of population evo-
lution and accelerate the speed of population convergence by inducing mutation among
excellent individuals (individuals close to the predicted POF) in the exploration popula-
tion to obtain o� spring with good convergence.

The remainder of this paper is organized as follows. Section 2 introduces the relevant def-
inition of dynamic multi-objective optimization and existing work. Section 3 elaborates on the
speci�c operation of our algorithm IMDMOEA. Section 4 reports on a comparison experiment
for the performance of the algorithm proposed in this paper and introduces the relevant perfor-
mance indicators, test problems, comparison algorithms and experimental parameter settings.
Section 5 presents the speci�c experimental results and experimental analysis. Finally, Section 6
concludes the paper.
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2. PRELIMINARIES

This section introduces the de�nition of dynamic multi-objective optimization [24] and re-
lated work on prediction-based MOEAs, and the shortcomings of existing work are discussed.

2.1. Optimization De�nitions
At a given timet, a DMOP can be regarded as a stationary MOP. Therefore, the DMOP

can be transformed into a sequence of stationary MOPs by discretizing time. Accordingly, for a
minimum DMOP, the de�nition is as follows:

De�nition 1 (DMOPs): The mathematical form of minimization DMOPs is as follows:

Minimize F(x; t) = ( f1(x; t); f2(x; t); : : : ; fm(x; t))T

s:t: x 2 

, (1)

wheret represents the time variable;x = (x1; x2; :::;xD) is the D-dimensional decision variable
from space
 ; m is the number of con�icting objectives;fi(x; t) is thei-th objective function of
the decision variablex at timet; F(x; t) is them-dimensional objective function vector.
 =
[L1;U1] � [L2;U2] � : : : � [LD;UD] , whereLi andUi are the lower limit and upper limit of the
i-th decision variable respectively.

In this paper, the following function is used to generate discrete timet:

t =
1
nt

$
�
� t

%
, (2)

wherent represents the severity of the change;� is the number of iterations, and� t represents the
frequency of environmental changes.

De�nition 2 (Pareto Dominance): At time t, the individual (decision vector)x Pareto-
dominates another individualy denoted byx � y if and only if :

(
fi(x; t) � fi(y; t); 8i = 1; : : : ;m
fi(x; t) < fi(y; t); 9i = 1; : : : ;m

. (3)

De�nition 3 (Pareto Optimal Set (POS)): At time t, if an individualx� is not dominated by
other individuals at the same time, it is the pareto optimal solution.

POSt = fx� j:9 x; x � x� g. (4)

Then the pareto optimal solution set at timet is calledPOSt.
De�nition 4 (Pareto Optimal Front (POF)): At time t, thePOFt is the corresponding ob-

jective vectors of thePOSt and can be de�ned mathematically as follows:

POFt = fF(x� ; t)jx� 2 POStg. (5)

With the migration of time, both the population's POS and POF may change. Farina et al.
[25] classi�ed DMOPs according to the changes of the POS and POF in a dynamic environment.
The four types of dynamic multi-objective optimization are shown in Table 1. In the real world,
all four of the scenarios are possible. It is worth noting that DMOEAs are generally used to solve
the �rst three types of changes and pay less attention to the situation where both the POS and
POF are unchanged. At the same time, due to the more complex change mode of real problems,
DMOEAs must be able to adapt to test problems with more severe and faster changes.
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Table 1: Four di� erent types of DMOPs

Types POS POF

Type I Change No Change
Type II Change Change
Type III No Change Change
Type IV No Change No Change

2.2. Related Works

In the �eld of dynamic multi-objective optimization, researchers mainly focus on performing
environmental change detection and designing the change response mechanism.

1) Change Detection:Detecting environmental changes is a challenging task for DMOEAs,
as it directly in�uences the e� ectiveness of the algorithm's response mechanisms. Currently, two
commonly used methods for environmental change detection are re-evaluating solutions [26–
28] and statistical population information distribution [29]. The main idea of the re-evaluation
method is to select some individuals from the current population to detect whether there is a
di� erence in the objective function value between two adjacent changes. If a signi�cant dif-
ference is observed, it indicates that the environment has changed. The population information
statistics method is used to determine whether the environment has changed by recalculating the
objective function value of the current POS and detecting its distribution. This method has better
robustness to noise but requires more parameters and consumes more computing resources.

In cases where the aforementioned methods may struggle to accurately detect environmental
changes, there can still be situations that negatively impact the algorithm's performance. To
address this, Shaaban et al. proposed a hybrid detection technology in their work [30, 31]. They
introduced a set of test problems known as the LZ benchmark, designed speci�cally to simulate
challenging environmental changes that are di� cult to detect in real-world scenarios.

2) Response Mechanism:Due to the frequency and severity of changes, the intervals be-
tween successive environmental changes may be small, and the variance may be large, which
poses a severe challenge for the design of the change response mechanism. High-quality algo-
rithms must be able to detect environmental changes promptly and run the appropriate processing
mechanisms to ensure that the algorithms can quickly track the changing POS and POF.

Traditional prediction-based response mechanisms use historical information from the en-
vironment to help the algorithm respond e� ectively to environmental changes. The concept of
predicting gradient is used in DMOEGS [19]. The algorithm uses all historical information from
the population's center point to predict the direction and distance of POS movement. Peng et
al. [20] proposed to use guided individuals to assist the population's evolution and reuse the
excellent solutions in the evolution process, which enhanced the algorithm's ability to track and
converge to the POS in the face of environmental changes. Although the population's center
point prediction method used by the algorithm can avoid the problem caused by insu� cient his-
torical information in the early stages of the algorithm, there are still many things that could be
improved when facing the problem of drastic changes. To improve the generalization ability of
DMOEAs for di� erent types of problems, strategies such as generating mutated individuals and
uniform sampling of the solution space [32–34] are used to solve problems with severe variation.
Although these strategies can e� ectively solve the problem of regular changes in the POS, it is
di� cult to solve the problem of irregular changes.
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Machine learning-based response mechanisms accomplish the training of predictive models
by dividing the historical information of the population into training and test data, and some
representative DMOEAs are described below. Zhou et al. [13] proposed a population predic-
tion method that includes population center point prediction and manifold prediction. They built
an AR model to predict the population center point and used the historical information of two
consecutive moments to predict the POS manifold. Jiang et al. [35] proposed a transfer learn-
ing method based on knee points, which improved the number of high-quality individuals in the
transfer learning process and accelerated the running speed of the algorithm by introducing knee
points. Sun et al. [36] proposed using the historical information of the quantile in the nondomi-
nated solution to predict and map the predicted optimal solution set from the objective space back
to the decision space. They achieved this by establishing an inverse model, which allows for a
better understanding of the predicted solution's characteristics. Ye et al. [37] proposed a multiple
source transfer learning method that fully utilizes historical information from multiple historical
environments. By running two transfer learning processes, this approach aims to achieve more
accurate predictions by leveraging information from various sources. Hou et al. [38] developed
a time series-based prediction model to partition the historical centroid sequences in the objec-
tive space into K sequences with maximum dissimilarity. They trained a neural network model
to minimize these dissimilarities. Subsequently, they utilized the manifold of the historical mo-
ments to estimate the manifold in the new environment. Finally, the predicted centroids from the
model and the manifolds at the next moment were combined with a subset of random individuals
to form the population for the next moment. Li et al. [39] proposed a problem analysis-based
dynamic multi-objective optimization algorithm that employs two response strategies to gener-
ate a new population. They introduced a problem analysis mechanism to adjust the proportion
of new populations generated by these strategies. Furthermore, they utilized an inverse model to
map the sampled results from the objective space back to the decision space for further analysis
to enhance prediction accuracy.

In addition, some change response mechanisms use clustering to improve the diversity of
the populations generated by the prediction process. In [40], a cluster-based regression transfer
learning method-based DMOEA is proposed, which uses the localPCA method to �nd the cluster
center of the POS and uses an autoregressive prediction model to predict the location of the
cluster center at the next moment. In [41], an adaptive swarm cluster-based dynamic multi-
objective synthetic minority oversampling technique is proposed, in which clustering using K-
means mainly serves to divide the majority class data in the training data into multiple sub-
majority classes and mix it with the minority class data for training the migration model to avoid
the e� ect of unbalanced data on the prediction accuracy of the model. In [42], Li et al. proposed
an adaptive dynamic multi-objective optimization algorithm based on classi�cation prediction.
Based on the detected types of environmental changes, the algorithm categorizes DMOPs into
two types: POS changes over time, and POS remains constant. The mutation strategy in the
algorithm selects the proportion of individuals in the population that need to undergo mutation
based on the intensity of environmental change.

Di� erent from these three clustering-based prediction mechanisms, to more accurately pre-
dict the distribution of the population at the next moment, the algorithm proposed in this paper
needs to divide the population into two boundary populations and one central population and
applies K-means clustering to these subpopulations. By utilizing the cluster centers, the algo-
rithm employs linear regression to make predictions about the population's distribution at the
next moment. It not only reacts to the evolutionary step length of the population but also reacts
to the POS manifold at the next moment, thus greatly enhancing the diversity of the population
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and improving the performance of the evolutionary algorithm.

3. PROPOSED ALGORITHM

This algorithm consists of a prediction method based on the cluster center point and an in-
duced mutation strategy. Section 3.1 describes the design principle of the cluster center point
method and the reason why this method can e� ectively maintain the distribution of solution sets.
Section 3.2 describes the generation method of the exploration population and the speci�c steps
of inducing mutation. Algorithm 4 describes the algorithm's overall operation process.

3.1. Prediction method based on cluster center point (PBCC)
According to the similarity between continuous environments, there is a certain similarity

between continuous POSs [43]. Therefore, predicting the population's change pattern based on
historical data is an e� ective approach for solving DMOPs. However, most prediction meth-
ods rely on the population's center point, which means the accuracy of the predictions heavily
depends on the current distribution of the population in the decision space and the magnitude
of environmental changes. When environmental changes intensify or the number of decision
variables increases, the POS undergoes signi�cant deformation. Consequently, the prediction
method based on the population's center point fails to capture the deviation information gener-
ated by other individuals around the center point, thus weakening the algorithm's e� ectiveness.
Fig. 2 illustrates the disparity between the prediction method employed in this paper and the
traditional method in the case of two-dimensional decision variables. Assume thatcenter2t is the
center point of the population and the center point of the second cluster in the population at time
t. The prediction method based on the center point of the population can solely determine the
evolutionary directionH2 of center2t . As a result, the predicted manifoldPOS

0
t + 1 will exhibit

a signi�cant error when compared to the actualPOS t+ 1.

Fig. 2. Di� erences between the PBCC method and other population center point prediction methods.POS0
t+1 represents

the prediction results based on the population center point method;POSt+1 represents the true POS at timet + 1

The primary purpose of the prediction method based on cluster center point (PBCC) is to
forecast the evolutionary direction of each cluster within a population, thereby enhancing the
convergence speed of the algorithm. At the outset, three cluster center points are randomly
chosen fromPopt (population at timet), and the population is divided into three clusters using
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the K-means method. To ensure that the clustering outcomes accurately represent the overall
distribution of the entire population, an error formula is devised to update the cluster center
points.

E =
3X

i=1

X

x2clusterit

jjx � centerit jj
2
, (6)

wherecenterit represents the i-th cluster center point ofPopt; clusterit represents the i-th cluster
of thePopt andx represents the individual inclusterit. i 2 [1; 3] divides the population into two
boundary populations and a central population, as shown in Fig. 2.

To minimize the error, the cluster center points of the population is updated according to the
following formula:

centerit =
1

jclusterit j

X

x2clusterit
x. (7)

Then, the three cluster center points of thePopt are obtained.

Algorithm 1 PBCC

Input: center(the cluster center point of population),cluster(the result of population cluster-
ing)

Output: P1; dir t

1: Calculatedistanceaccording to Formula (8);
2: With the objective of minimizing distance, use a greedy strategy to bind the cluster center

points between time pointst � 1 andt together;
3: Calculate the movement vectordir i

t of the cluster center point according to Formula (9);
4: P1  Predicting the population at timet + 1 according to Formula (10);
5: ReturnP1;

The evolutionary direction of each cluster center point is utilized to guide the evolution di-
rection of individuals within the respective cluster. Initially, a correspondence is established
between the cluster center points of the population at timet � 1 and timet. This is achieved by
computing the Euclidean distance between the cluster center points of the populations at the two
time instances. The resulting positional relationship, denoted asdistance, provides information
about the spatial arrangement of the cluster center points across di� erent time points.

distance=

2
66666666664

dis1
1 � � � dis3

1
:::

:::
:::

dis1
3 � � � dis3

3

3
77777777775
, (8)

wheredisj
i represents the Euclidean distance between the i-th cluster center point ofPopt� 1 and

the j-th cluster center point ofPopt.
The greedy strategy is used to bind the cluster center points of the populations at the two

moments. Every time looking for the minimum value from the matrixdistance, we assume it is
disb

a, and it means that we can bind the a-th cluster center point ofPopt� 1 with the b-th cluster
center point ofPopt, then remove the row and column wheredisb

a is from the matrix. These
operations repeat until the matrix is empty. Reorder the cluster center points of the population at
time t according to the corresponding relationship. (Since the ordinal numbers of the clusters of
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the two closest populations at two consecutive moments may not be the same, as shown in Fig.
3 (b), we need to reorder the population clusters and their cluster center points at timet based on
the ordinal numbers of the population clusters at timet � 1.)

(a) (b) (c)

Fig. 3. The clusters and the order of cluster center points at moment t are reordered according to the order of the
corresponding clusters at moment t-1

Secondly, the calculation method of the moving direction of the cluster center point of the
population is as follows:

dir i
t = centerit � centerit� 1, (9)

wheredir i
t represents the direction of movement of the i-th cluster center point at time t.

SupposePOSi
t is the set of nondominated solutions of the i-th cluster inPopt. the prediction

of the population distribution at the next moment is realized through Formula (10).

P1 = [ 3
i=1(POSi

t + dir i
t). (10)

3.2. Induced mutation strategy based on exploration population

When the frequency of environmental changes is fast, and the severity of the changes is
large, it is di� cult for PBCC to predict complex environmental changes accurately. To address
this issue, an induced mutation strategy based on the exploration population is proposed. The
strategy consists of two parts: 1) exploration population acquisition and 2) induced mutation.

3.2.1. Exploration Population Acquisition (EPA)
The exploration population is generated to explore the decision space better while reserving

good individuals for mutations to improve the algorithm's ability to handle nonlinear change
problems. The process of obtaining the exploration population is shown in Algorithm 2. Based
on PBCC,k individuals with the best distribution are selected from each cluster ofPopt to join
Ptempto generate an exploration populationP2. Additionally, a reference point is established
for each cluster in the decision space, guided by the direction of movement of the population
cluster.

Suppose thatzt is the reference point corresponding toclusterit (the i-th cluster ofPopt). It
is calculated as follows:

zt = (zt
1; zt

2; � � � ; zt
D),

zt
j =

(
low j ; r t

j < 0
highj ; r t

j � 0
; j 2 (1; � � � ; D),

dir i
t = (r t

1; r t
2; � � � ; r t

D),

(11)
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Algorithm 2 EPA

Input: clustert (the clustering result ofPopt), dir t (the movement vector of each cluster in
Popt)

Output: P2
1: Ptemp  Select k individuals with the best distribution from each cluster of thePopt;
2: Obtain the reference pointzt for each cluster's movement direction according to Formula

(11);
3: Calculate the sampling number and sampling interval of the exploration population accord-

ing to Formula (13);
4: Generate a sampling gradient sequenceseqaccording to Formula (12);
5: P2  Sample the k individuals with the best distribution in each cluster based on the gradient

sequenceseq, and perform a reverse sampling in the� dir i
t direction;

6: P2  Perform boundary detection onP2 according to Formula (14);
7: ReturnP2;

wheredir i
t represents the movement direction of the i-th cluster ofPopt; D represents the number

of decision variables;low j represents the lower bound of the j-th dimension decision variable,
andhighj represents the upper bound of the j-th dimension decision variable.

Once the reference points are determined, it is crucial to account for the impact of environ-
mental changes on the magnitude of POS alterations. To overcome the limitations of PBCC, the
exploration population should prioritize handling scenarios involving both minor and substantial
POS changes. To address this, it is essential to establish an appropriate sampling interval within
the decision space when generating the exploration population. At the same time, to better deal
with errors in the prediction direction, a reverse search should be performed along the evolution
direction during sampling.

Fig. 4. Exploration Population Acquisition

Fig. 4 shows the sampling method of EPA in the two-dimensional decision space. The red
dot (center) represents the center point of the cluster; the green dot (Z) represents the reference
point corresponding to the current cluster. The blue dot (U) represents the selected individual
with good distribution in the cluster, and the orange dot represents the sampled individual. The
position of the reference pointZ is the evolution direction of the cluster center point. The sam-
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pling interval can be controlled by constructing gradient sequences to achieve e� cient sampling
using limited computing resources. To better handle situations with both minor and intense POS
changes, the gradient sampling sequence, denoted asseq, is constructed as follows:

seq=

8
>><
>>:
fq; 2q; � � � ; ( s� 1

2 )q; ( s� 1
2 )q � � � ; 2q; qg ; (s � 1) mod 2= 0

fq;2q; � � � ; ( s
2)q; � � � ; 2q; qg ;else

, (12)

whereq is the minimum sampling interval, and s represents the number of samples for each
individual in Ptemp(the number of orange individuals corresponding to each blue individual in
Fig. 4). Their calculation method is as follows:

s =
S
3k

,

l =

8
>>><
>>>:

�
s� 1
2

�2
+ s� 1

2 ; (s � 1) mod 2= 0
�

s
2

�2
; else

,

q =
zt � centerit

l
,

(13)

whereS represents the total number of individuals sampled;k represents thek individuals
with the best distribution in a cluster; 3k represents the number of individuals with the best
distribution inPopt; l is used to control the minimum interval for sampling; thus the minimum
di� erenceq of the sequence can be obtained.

While it is desirable to sample more points in order to address problems with a larger number
of decision variables, it also implies higher computational costs. For the sake of simplicity, when
measuring the distribution, k is set to 3 to obtain the distribution of the current cluster, and it is
recommended thatS � N (N is the population size). In this paper,s is set tobN=9c. Lastly,
reverse sampling is performed once using� dir i

t as the moving vector for thek individuals with
the best distribution in each cluster.

The individuals generated by this strategy sampling may cross the boundary, and the follow-
ing boundary detection strategy needs to be added to ensure the validity of the generated solution.
Suppose thaty is the solution generated by EPA, and its update method is as follows:

xi =

8
>><
>>:
ui � (ui � lowi) � rand(1) ; yi < lowi

ui + (highi � ui) � rand(1) ; yi > highi
, (14)

whereyi represents the i-th dimensional decision variable fory ; xi represents the i-th dimensional
decision variable of the solution after boundary detection;u represents the solution with the best
distribution inPopt corresponding toy; lowi andhighi represent the minimum and maximum
values of the i-th dimensional decision variable, respectively, and rand(1) represents a random
number between 0 and 1.

3.2.2. Induced Mutation (IM)
To further enhance the accuracy of the algorithm's predictions, the population can produce

more excellent o� spring by controlling the range of mutations, thus maintaining the population's
diversity and correcting the evolutionary direction of the population. By introducing small mu-
tations to excellent individuals, there is a greater chance of obtaining excellent o� spring to guide

11



the evolution of the population and enhance the accuracy of the algorithm's prediction. The pro-
cess of selecting excellent individuals in the objective space and introducing mutations to these
individuals is called induced mutation. It is important to note that the term ”excellent individ-
uals” in this context refers to individuals within the exploration population that are likely to be
located in the region of the next moment's POF manifold.

Algorithm 3 IM

Input: Popt (population at time t),P2 (exploration population)
Output: P3
1: Calculate the movement directionv of the population center point in the objective space and

predict the possible positions of the center point and boundary point according to Formula
(15);

2: CalculatedPAreaaccording to Formula (16);
3: if 9x(x 2 P2 ^ F(x) 2 PArea) then
4: P3  Add Gaussian variation according to Formula (17) tosetX; ==setX = fxjx 2 P2 ^ F(x) 2

PAreag;
5: end if
6: if jP3j < 20%N then
7: temp Randomly generate (20%N � j P3j) individuals;==N is the population size

8: P3 = P3 [ temp;
9: end if

10: ReturnP3;

Fig. 5. Predicting potential areas ofPOFt+1 in the objective space

Fig. 5 shows how to predict the POF manifold area in the two-dimensional objective space.
In the objective space, the center point C of the population and the boundary points A and B are
selected for linear prediction. The prediction method can be described in the following form:

v = Ct � Ct� 1,

Ct+1 = Ct + � v,

At+1 = At + � v,

(15)
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whereCt represents the center point ofPopt in objective space;At represents the boundary
points ofPopt in objective space;v represents the moving vector of the population in objective
space, and� represents the prediction accuracy of the area.

For example, the possible positions of the population's center point (C) and boundary point
(A, B) at timet + 1 are obtained by setting� = 0:5 and� = 1:5, respectively. Thus, a quadratic
�t can be performed for the center pointCt+1 and boundary pointsAt+1 andBt+1 to obtain the
�tted curve y1 with � = 0:5 andy2 with � = 1:5. A linear �t is performed to the boundary points
At+1(� = 0:5) andAt+1(� = 1:5) to gety3. The calculation method ofy4 is similar toy3. Thus,
the possible regions of the POF manifold can be determined at timet + 1 (as shaded in Fig. 5)
and as follows:

PArea= f( f1; f2)j8(( f1; f2) 2 P2)
(y1( f1) � f2 � y2( f1); y4( f1) � f2 � y3( f1))g

, (16)

wherePArearepresents individuals in P2 surrounded by four curves.
For each individual that appears inPArea, the Gaussian mutation is used to generate three

new mutated individuals, and the number of new individuals generated should not exceed 20%N.
The method of Gaussian mutation is as follows:

xnew
i = xold

i + Gaussian(0; � i),

� i =
highi � lowi

disturbance
,

(17)

where xold
i represents the value of the i-th dimensional decision variable of the individual in

PArea; xnew
i is an individual that undergoes Gaussian variation;� i represents the standard devia-

tion of Gaussian variation;highi andlowi represent the maximum and minimum values of the i-th
decision variable in the decision space, respectively, anddisturbanceis used to control variation
precision. The more extensive thedisturbancevalue, the smaller the variation range; otherwise,
the more extensive the variation range. It is recommended to setdisturbance= 22� m � 10 (mrep-
resents the dimension of the objective space) to adjust the accuracy of the mutation according to
the objective dimension. A greater degree of mutation in a high-dimensional space helps �nd the
solution. If the number of populations the mutation generates is insu� cient, random individuals
will be generated to supplement it.

3.3. Framework of IMDMOEA

Algorithm 4 describes the basic framework of IMDMOEA. Timet and populationP are ini-
tialized in the �rst line. IMDMOEA starts the evolution process in lines 2-16. In line 3, the
algorithm detects whether the environment has changed by randomly selecting 10% of the pop-
ulation for re-evaluation. When the environment changes, the entire population is re-evaluated,
and the prediction method is based on the cluster center. The evolution of nondominated indi-
viduals is guided in the population cluster according to the evolution direction of the center point
of the population cluster to obtainP1. In the second step, considering that POS may undergo
drastic changes, the exploration populationP2 is generated by sampling in the decision space,
andP2 is mapped to the objective space. A new populationP3 is generated by applying induced
mutation to P2 according to the prediction result of the POF. To establish the archive setParchieve,
P1, P2 andP3 merge in line 11.

Finally, N solutions are selected from the combination ofP0 andParchieve through the envi-
ronment selection operator in NSGA2 as the prediction result of the population at timet + 1. It is
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Algorithm 4 The basic framework of IMDMOEA

Input: N (population size),� t (the frequency of change),nt (the severity of change), the stop-
ping criterion

Output: P
1: Initialize a populationP, the discrete timet  0, iteration counterIter  0
2: [centert ; clustert] = kmeans(P;3); ==clustert represents the result of population clustering at time t,centert repre-

sents the cluster center points

3: while the termination criterion is not metdo
4: if change is detectedthen
5: t = t + 1;
6: P0  Re-evaluate the populationP;
7: [centert ; clustert] = kmeans(P0; 3);
8: [P1; dir t ]  PBCC(center; cluster);
9: P2  EPA(clustert; dir t);

10: P3  IM (P0; P2);
11: Parchieve  P1 [ P2 [ P3;
12: P  EnvironmentalSelection(Parchieve[ P0)
13: else
14: Po f f  GetO� spring (P); ==use the reproduction operator of RM-MEDA

15: P  EnvironmentalSelection (P [ Po f f ); ==perform environment selection operation of RM-MEDA

16: end if
17: Iter = Iter + 1;
18: end while
19: ReturnP;

worth noting that the static optimizer the algorithm uses is RM-MEDA when no environmental
changes occur. Line 14 generates the o� springPo f f of the current population, and line 15 merges
thePo f f andP to obtain a new population through environmental selection.

3.4. Complexity Analysis

First, the time complexity of K-means clustering isO(3lND) � O(N), where 3 represents
the number of clusters;l is the number of K-means iterations;N is the population size, andD
is the dimension of the decision variable. Since nondominated sorting must be performed in
PBCC, its time complexity isO(MN2), whereM is the number of objectives; The computation
of crowding distance in the EPA strategy requiresO(DN2); sampling requiresO(S), whereS
represents the total number of individuals sampled, so the time complexity of EPA isO(DN2).
The time complexity of the IM strategy is no more thanO(N). Therefore, the overall complexity
of IMDMOEA is O(DN2) + O(MN2). WhenM < D, the algorithm complexity isO(DN2).

4. Experimental Setup

This section mainly introduces the test problems, performance indicators, and the comparison
algorithms used in the experiment, as well as the parameter setting methods of each algorithm
and test problem.
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4.1. Test instances

Several classic test suites in dynamic multi-objective optimization are used for algorithm
performance testing, including the FDA test suite (FDA1-FDA4) [25], dMOP test suite (dMOP1-
dMOP3) [16], F test suite (F5-F9) [29] and JY test suite (JY1-JY8) [44]. Among them, the FDA
test suite is extended from the ZDT and DTLZ test suites; the F and dMOP test suites are modi�ed
from the FDA test suite, and the relationship between the decision variables of JY is nonlinear.
It should be noted that FDA, dMOP, F and JY test suites all contain Type I, Type II and Type III
questions, and FDA4 and F8 are three-objective questions.

4.2. Performance metrics

The performance of the algorithms is measured by using two metrics commonly used in
dynamic multi-objective optimization:

1) Mean Inverted Generational Distance (MIGD) [45, 46]: The Inverted Generational Dis-
tance (IGD) evaluates the convergence and diversity of the algorithm by measuring the closeness
between the real POF and the POF obtained by the algorithm. IGD can be calculated as follows:

IGD(POF�
t ; POFt) =

P
v2POF�

t
d(v; POFt)

jPOF�
t j

, (18)

wherePOF�
t is a set of uniformly distributed solutions in the true POF of the MOP given at time

t; POFt is the approximation of the actualPOF obtained by the algorithm at time t;jPOF�
t j rep-

resents the number of solutions inPOF�
t ; d(v; POFt) represents the minimum Euclidean distance

from pointv to the point inPOFt. The smaller the value of the IGD, the closer thePOFt obtained
by the algorithm is toPOF�

t , and the more uniform the solution distribution.
MIGD is de�ned as the average value of IGD over a given time step:

MIGD =
P

t2T IGD(POF�
t ; POFt)

jTj
, (19)

whereT represents a set of discrete time points in a run, andjTj represents the cardinality ofT.
2) Mean Hypervolume metric(MHV) [47, 48]: The Hypervolume (HV) is also an important

indicator often used to evaluate the convergence and distribution of algorithms. The de�nition of
HV is as follows:

HV(POFt; re f) = �

0
BBBBBB@

jPOFt j[

i=1

ci

1
CCCCCCA, (20)

wherere f 2 Rm is the reference point for calculating HV and� represents the Lebesgue measure;
ci represents the hypervolume formed by the i-th individual inPOFt and the reference point
ref. The larger the HV, the better the distribution and convergence of thePOFt obtained by the
algorithm.

MHV is the average value of HV in a given time step and can be calculated as:

MHV =
P

t2T HV(POFt; re f)
jTj

. (21)
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4.3. Comparison algorithm
Six popular DMOEAs were selected for algorithm performance comparison with IMDMOEA2,

including DNSGA2A [49], PPS [13], PMS [20], DMS [32], PBDMO [33] and HPPCM [34].
These six algorithms are very representative. Among them, DNSGA2A is the most classic
DMOEA, and its core idea is to improve the ability of the algorithm to cope with environmental
changes by reinitializing part of the population; PPS uses the autoregressive model (AR) to pre-
dict the center point and manifold of the population; PMS introduces the concept of spontaneous
evolution of the population and predicts the changes of the population according to the evolution-
ary results combined with the memory strategy; DMS proposes a gradual search strategy, which
uses the minimum and maximum values in the nondominated solution of the population in the
decision space to determine the search area and determine the direction of movement of the POS
for sampling prediction; PBDMO mixes a variety of step-size setting schemes to linearly predict
the POS and ensures the diversity of the population through sampling and shrinking strategies;
HPPCM provides guidelines for solving MOPs with unpredictable environmental changes using
a controllable precision mutation strategy.

4.4. General parameter settings

Table 2: Parameter settings for test suites

Problem N M D E Problem N M D E

JY1 100 2 10 150000 FDA1 100 2 10 150000
JY2 100 2 10 150000 FDA2 100 2 10 150000
JY3 100 2 10 150000 FDA3 100 2 10 150000
JY4 100 2 10 150000 FDA4 100 3 10 150000
JY5 100 2 10 150000 F5 100 2 10 150000
JY6 100 2 10 150000 F6 100 2 10 150000
JY7 100 2 10 150000 F7 100 2 10 150000
JY8 100 2 10 150000 F8 100 3 10 150000

dMOP1 100 2 10 150000 F9 100 2 10 150000
dMOP2 100 2 10 150000
dMOP3 100 2 10 150000

(1) Parameter settings for each algorithm: The parameter settings of the other six algorithms
used for comparison with IMDMOEA are consistent with their original articles. Among
them, the reinitialization population proportion of DNSGA2 is set to 20%; the order
p of the AR model in PPS is set to 3, and the length of history mean point series is
M = 23; In PMS,Obsize(the number of guide individuals) is set to 10; OP (the number
of initialized population) is set to 10;OB (the number of aliquots) is set to 9, and� t
(the time of evolving independently) is set to 2. In DMS, the control parameterr1 = 0:5
of the predicted population size; the parameterr2 = 0:5 in the diversity maintenance
strategy, andm = 10 in the progressive search strategy; In PBDMO, the number of non-
principal variable samplesN2 = D (D represents the dimension of the decision variable

2The source code of IMDMOEA is available athttps://github.com/xtuxky/IMDMOEA .
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and D = 10), and the number of samples of the principal variableN1 = N=(2D) (N
represents the population size andN = 100; N1 = 5); In HPPCM, the time step of
autonomous evolution is� t = 2 andr = 2 in controllable precision mutation strategy;
Finally, the cluster number of static optimizer RM-MEDA is set to 5.

(2) Parameter settings for test problems: The parameter settings for all test suites are shown
in Table 2.N represents the size of the population;M represents the number of objectives
for the test problem;D represents the number of dimensions of the decision variables,
andE represents the number of function evaluations per run for each test problem. Each
algorithm ran 25 times to count the mean and standard deviation of indicators.

(3) Change Detection: For all algorithms, 10% of the population was re-evaluated for detec-
tion of environmental changes.

5. Experimental Results and Analysis

In this section, the results of our algorithm experiments are presented and the results of
running IMDMOEA and its comparison algorithms on the test problems are analyzed. Finally,
component, parameter impact and statistical analyses on IMDMOEA are reported.

The MIGD and MHV indicators of IMDMOEA are listed in Tables 3–8 (the data in brackets
are standard deviations). For the convenience of visual analysis, the best result of each test
instance is shown in bold. ”+”, ”-”, ” =” indicate that the contrasting algorithm is statistically
signi�cantly better than, worse than or irrelevant to IMDMOEA according to the Wilcoxon test
(signi�cance level is set at 5%) [50]. At the same time, the (� t; nt) = (5;10) is set as the control
group and added (� t; nt) = (5;20) and (� t; nt) = (10;10) as the experimental group to study the
frequency of change and the impact of the severity of the change on algorithm performance.

5.1. Performance on JY Test Suite

It can be seen from Table 3 and Table 4 that IMDMOEA performed better in solving dynamic
optimization problems than other algorithms. JY1-JY8 has a total of eight test problems. After
modifying the change frequency and severity, 24 cases were tested by each algorithm. Table
3, IMDMOEA achieved better results than most of the other algorithms in 19 cases, but DMS
and HPPCM performed better on the two test problems JY5 and JY6. Because JY5 is a type III
problem with POS-invariant properties, it is not friendly to prediction-based algorithms when the
environment changes mildly. It is di� cult for IMDMOEA to outperform DMS in this case be-
cause there is no mechanism to reuse previous excellent solutions. However, DMS had superior
performance in this particular case due to its reuse of the population in our experiments. JY6 is
a multimodal test problem, and it has the characteristic that the POF remains static. The induced
mutation strategy in IMDMOEA will generate some random solutions for the situation where the
POF remains unchanged, which leads to certain disadvantages of the algorithm in such problems.
Overall, IMDMOEA was e� ective in solving dynamic changes in most cases. Although it had
slight limitations on JY5 and JY6, IMDMOEA performed well as� t decreased.

In Table 4, the Mean Hypervolume (MHV) values are recorded to enhance the accuracy of
algorithm evaluation. It is observed that the MHV values of IMDMOEA are generally better than
those of the other algorithms. Due to the prediction method based on cluster center points and
induced mutation strategy, IMDMOEA could more e� ectively deal with POS changes compared
to other advanced algorithms such as PBDMO.
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Table 3: Mean and standard deviation values of MIGD obtained by the seven algorithms on JY

Problem (� t; nt) PPS DNSGA2A PMS DMS PBDMO HPPCM IMDMOEA

JY1

(10,10) 8.9481e-2 (2.34e-2) - 9.0789e-1 (2.11e-1) - 7.5886e-2 (1.44e-2) - 2.1294e-1 (7.57e-2) -3.7212e-2 (5.50e-3)+ 1.4988e-1 (1.45e-2) - 6.3306e-2 (9.92e-3)
(5,10) 6.9663e-1 (2.84e-1) - 2.9090e+0 (7.43e-1) - 3.5511e-1 (1.42e-1) - 1.0307e+0 (3.37e-1) - 5.1925e-1 (1.06e-1) - 2.5711e-1 (2.95e-2) - 1.6295e-1 (2.97e-2)
(5,20) 3.0789e-1 (1.18e-1) - 2.5153e+0 (5.96e-1) - 8.5719e-2 (2.14e-2) - 5.0440e-1 (2.14e-1) - 5.4805e-1 (1.31e-1) - 1.3143e-1 (1.16e-2) -6.2934e-2 (9.13e-3)

JY2

(10,10) 2.5767e+0 (5.72e-1) - 3.2188e-2 (6.43e-3) - 1.2987e-2 (4.05e-3) - 7.2971e+0 (3.72e+0) - 3.9059e-2 (7.42e-3) - 9.4024e-3 (1.56e-3) - 1.2606e-3 (2.35e-4)
(5,10) 8.1291e+0 (1.39e+0) - 1.6545e+0 (1.33e-1) - 1.6634e-1 (1.13e-1) - 1.1140e+1 (2.49e+0) - 5.3771e-1 (4.80e-3) - 6.4929e-2 (1.08e-2) - 3.8469e-3 (6.49e-4)
(5,20) 3.7050e+0 (9.67e-1) - 1.6293e-1 (2.30e-2) - 3.6962e-2 (1.49e-2) - 8.7006e+0 (4.67e+0) - 5.3202e-1 (6.78e-3) - 8.0919e-3 (6.93e-4) - 5.1107e-4 (5.33e-5)

JY3

(10,10) 2.2438e-1 (6.50e-2) - 3.8555e-2 (1.30e-2) - 1.1976e-3 (8.24e-4) - 1.3694e-3 (9.60e-4) - 8.1950e-4 (7.08e-4)= 3.1511e-3 (1.41e-3) - 6.4186e-4 (4.75e-4)
(5,10) 4.5619e-1 (1.09e-1) - 4.4782e-2 (7.14e-3) - 4.8557e-3 (7.26e-3) - 5.9172e-3 (9.00e-3) - 4.9276e-2 (9.56e-3) - 7.7162e-3 (2.70e-3) -1.7724e-3 (2.25e-3)
(5,20) 3.3289e-1 (1.32e-1) - 4.3098e-2 (6.97e-3) - 3.0063e-3 (2.54e-3) - 5.3080e-3 (6.09e-3) - 5.3000e-2 (9.69e-3) - 7.3230e-3 (2.66e-3) -1.3901e-3 (2.15e-3)

JY4

(10,10) 3.5209e-1 (1.06e-1) - 9.3765e-1 (2.71e-1) - 5.8287e-2 (2.38e-2) - 1.4999e-1 (1.57e-1) - 3.7516e-2 (1.24e-2) - 2.2967e-2 (4.04e-3) -1.1195e-2 (1.07e-3)
(5,10) 2.5234e+0 (6.83e-1) - 3.6951e+0 (2.61e-1) - 1.3230e-1 (8.40e-2) - 3.4023e+0 (1.62e+0) - 3.2162e-1 (7.00e-2) - 7.1722e-2 (1.73e-2) - 1.9889e-2 (3.02e-3)
(5,20) 3.5591e+0 (7.61e-1) - 1.1877e+0 (1.83e-1) - 1.2194e-1 (4.74e-2) - 3.1314e-1 (2.54e-1) - 3.7347e-1 (5.56e-2) - 2.2331e-2 (4.12e-3) -1.1981e-2 (1.48e-3)

JY5

(10,10) 6.3918e-2 (4.19e-2) - 1.2082e-3 (4.34e-5) - 5.0456e-4 (6.02e-5)= 4.4987e-4 (5.07e-5)= 4.6585e-4 (8.36e-5)= 6.2923e-4 (1.70e-4) - 4.9989e-4 (1.23e-4)
(5,10) 2.4908e-1 (1.12e-1) - 1.7468e-3 (5.62e-4) - 1.0463e-3 (2.47e-4) - 8.0955e-4 (1.86e-4)= 1.4399e-1 (1.12e-1) - 1.1059e-3 (2.53e-4) - 7.3131e-4 (1.52e-4)
(5,20) 2.3849e-1 (1.15e-1) - 1.2672e-3 (9.33e-4) - 9.1875e-4 (1.85e-4) - 7.4072e-4 (3.05e-4)= 1.3789e-1 (8.88e-2) - 8.7044e-4 (2.54e-4) - 6.3727e-4 (1.66e-4)

JY6

(10,10) 1.5795e+1 (5.04e+0) - 3.6672e+0 (2.96e-1)+ 1.5571e+1 (1.56e+0) - 4.4595e+1 (1.00e+1) - 1.1315e+1 (3.12e+0) - 6.1902e+0 (2.66e-1)+ 6.7757e+0 (3.17e-1)
(5,10) 4.9710e+1 (9.63e+0) - 2.9854e+1 (1.46e+0) - 2.4653e+1 (3.09e+0) - 1.2160e+2 (1.04e+1) - 1.9500e+1 (1.43e+0) - 7.7972e+0 (4.05e-1)= 7.8415e+0 (2.07e-1)
(5,20) 2.9201e+1 (6.37e+0) - 1.2133e+1 (7.19e-1) - 1.8091e+1 (2.04e+0) - 7.0786e+1 (1.17e+1) - 2.2132e+1 (3.15e+0) - 5.9702e+0 (1.87e-1)= 6.0013e+0 (2.64e-1)

JY7

(10,10) 4.1994e+1 (1.09e+1) - 2.2867e+1 (1.74e+0) - 9.0706e+1 (2.11e+1) - 3.6594e+2 (1.58e+2) - 1.2229e+1 (2.57e+0) - 7.8832e+1 (1.34e+1) - 7.3451e+0 (2.39e+0)
(5,10) 1.4760e+2 (1.54e+1) - 1.5731e+2 (8.93e+0) - 1.3989e+2 (1.97e+1) - 2.0373e+2 (7.65e+1) - 3.7260e+1 (1.30e+0) - 1.0932e+2 (7.51e+0) - 2.7661e+1 (1.20e+1)
(5,20) 1.0798e+2 (1.95e+1) - 8.4237e+1 (6.08e+0) - 8.5463e+1 (2.04e+1) - 3.2361e+2 (1.34e+2) - 3.5300e+1 (2.86e+0) - 7.6040e+1 (6.20e+0) - 9.4627e+0 (3.85e+0)

JY8

(10,10) 1.4554e-1 (3.37e-2) - 4.5431e-2 (1.79e-2) - 1.8158e-2 (1.28e-4) - 2.2112e-2 (1.53e-4) - 1.8182e-2 (1.31e-4) - 1.7878e-2 (1.60e-4) -1.7801e-2 (1.09e-4)
(5,10) 3.8878e-1 (7.85e-2) - 3.7042e-2 (9.50e-3) - 1.9402e-2 (4.33e-4) - 2.3603e-2 (5.99e-4) - 3.1530e-2 (8.54e-3) - 2.1413e-2 (7.27e-4) -1.8449e-2 (2.40e-4)
(5,20) 3.8799e-1 (9.82e-2) - 3.8002e-2 (9.68e-3) - 2.0039e-2 (6.63e-4) - 2.3453e-2 (1.17e-3) - 3.5923e-2 (1.31e-2) - 1.9229e-2 (5.78e-4)= 1.8965e-2 (6.05e-4)

5.2. Performance on FDA and dMOP Test Suite
From Table 5 and Table 6, it can be seen that in the seven test problems of dMOP1-dMOP3

and FDA1-FDA4, IMDMOEA showed extreme competitiveness compared with PPS, DNSGA2A,
PMS, DMS, PBDMO and HPPCM. In Table 5, for 21 test cases with di� erent frequencies and
severity, 13 IMDMOEA's MIGD value cases are the best, and two cases are the second best. In
Table 6, it is evident that IMDMOEA consistently has the best MHV values in 15 cases across
various changes in the test problems.

Table 4: Mean and standard deviation values of MHV obtained by the seven algorithms on JY

Problem (� t; nt) PPS DNSGA2A PMS DMS PBDMO HPPCM IMDMOEA

JY1

(10,10) 3.9215e-1 (2.41e-2) - 1.7929e-1 (1.46e-2) - 4.1398e-1 (2.07e-2) - 3.0941e-1 (3.28e-2) -4.8755e-1 (1.04e-2)+ 3.3598e-1 (1.20e-2) - 4.5252e-1 (1.09e-2)
(5,10) 1.7331e-1 (2.88e-2) - 9.6183e-2 (5.86e-3) - 2.5445e-1 (4.94e-2) - 1.4444e-1 (3.15e-2) - 1.8623e-1 (2.21e-2) - 2.4031e-1 (1.41e-2) -3.2147e-1 (2.24e-2)
(5,20) 2.3503e-1 (3.32e-2) - 1.1785e-1 (8.09e-3) - 4.1308e-1 (2.60e-2) - 2.2665e-1 (3.45e-2) - 1.7926e-1 (1.58e-2) - 3.5331e-1 (2.16e-2) -4.4723e-1 (1.47e-2)

JY2

(10,10) 1.1840e-1 (2.47e-2) - 5.0421e-1 (6.61e-3) - 5.6717e-1 (1.70e-2) - 2.4409e-1 (1.75e-2) - 5.1728e-1 (1.69e-2) - 6.0296e-1 (5.02e-3) -6.7141e-1 (2.34e-3)
(5,10) 3.7635e-2 (8.13e-3) - 2.6903e-1 (4.63e-3) - 4.1934e-1 (5.23e-2) - 8.1749e-2 (1.91e-2) - 1.7248e-1 (2.96e-3) - 4.3763e-1 (8.68e-3) -6.3707e-1 (4.91e-3)
(5,20) 8.0155e-2 (2.17e-2) - 3.7356e-1 (5.29e-3) - 5.3214e-1 (3.22e-2) - 1.3360e-1 (2.03e-2) - 1.7215e-1 (3.38e-3) - 5.9499e-1 (4.28e-3) -6.8324e-1 (1.29e-3)

JY3

(10,10) 2.2112e-1 (2.90e-2) - 5.0105e-1 (6.92e-2) - 6.8281e-1 (7.89e-3) -6.9406e-1 (2.79e-2)+ 6.8708e-1 (1.16e-2)= 6.4803e-1 (2.00e-2) - 6.8740e-1 (2.35e-3)
(5,10) 1.3134e-1 (2.90e-2) - 4.7909e-1 (3.84e-2) - 6.5731e-1 (2.78e-2) - 6.6710e-1 (5.05e-2)= 4.0065e-1 (4.12e-2) - 6.1171e-1 (2.82e-2) -6.8305e-1 (3.50e-3)
(5,20) 2.0233e-1 (1.26e-1) - 4.7168e-1 (2.88e-2) - 6.5742e-1 (2.11e-2) - 6.4102e-1 (6.15e-2)= 3.7798e-1 (2.38e-2) - 6.1069e-1 (2.39e-2) -6.8212e-1 (2.80e-3)

JY4

(10,10) 3.4525e-1 (3.24e-2) - 3.2172e-1 (1.79e-2) - 5.6681e-1 (2.99e-2) - 5.2951e-1 (3.89e-2) - 6.6023e-1 (1.42e-2) - 6.1479e-1 (1.41e-2) -6.8091e-1 (7.12e-3)
(5,10) 1.1604e-1 (2.87e-2) - 2.3284e-1 (8.34e-3) - 5.2160e-1 (4.35e-2) - 1.8675e-1 (4.93e-2) - 3.7704e-1 (4.05e-2) - 5.0963e-1 (2.39e-2) -6.3718e-1 (1.10e-2)
(5,20) 7.0851e-2 (1.79e-2) - 2.7955e-1 (1.17e-2) - 5.1406e-1 (5.71e-2) - 4.2612e-1 (8.79e-2) - 3.7464e-1 (4.26e-2) - 5.8927e-1 (1.04e-2) -6.6537e-1 (9.96e-3)

JY5

(10,10) 4.7880e-1 (6.98e-2) - 6.8339e-1 (4.78e-4)+ 6.7242e-1 (1.18e-3)= 6.8470e-1 (1.09e-3)+ 6.7488e-1 (8.72e-4)+ 6.6953e-1 (1.74e-3) - 6.7220e-1 (1.54e-3)
(5,10) 3.1974e-1 (6.01e-2) - 6.9109e-1 (2.59e-3)+ 6.8703e-1 (1.38e-3) - 7.0352e-1 (2.18e-3)+ 3.1124e-1 (9.50e-2) - 6.7922e-1 (1.96e-3) - 6.8974e-1 (2.00e-3)
(5,20) 3.0448e-1 (5.20e-2) - 6.7148e-1 (8.49e-3)= 6.6990e-1 (1.46e-3) - 6.7784e-1 (1.40e-3)+ 2.9414e-1 (1.18e-1) - 6.6581e-1 (2.15e-3) - 6.7245e-1 (1.88e-3)

JY6

(10,10) 2.0970e-2 (6.28e-3) - 2.9721e-2 (3.40e-3) - 7.4352e-3 (2.21e-3) - 1.2404e-3 (1.03e-3) -3.5697e-2 (9.07e-3)= 2.4063e-2 (3.02e-3) - 3.3335e-2 (2.85e-3)
(5,10) 2.6647e-3 (1.37e-3) - 7.5154e-4 (4.28e-4) - 2.6796e-3 (1.49e-3) - 2.1835e-3 (1.64e-3) -1.8933e-2 (3.75e-3)+ 5.7291e-3 (2.19e-3) - 1.5943e-2 (2.62e-3)
(5,20) 5.4767e-3 (3.21e-3) - 1.2185e-2 (2.13e-3) - 1.2563e-2 (2.69e-3) - 2.1353e-4 (3.86e-4) - 2.8924e-2 (1.46e-2) - 3.4968e-2 (2.39e-3) -3.8738e-2 (3.88e-3)

JY7

(10,10) 9.0982e-2 (3.56e-2) - 2.4381e-1 (1.08e-2) - 1.2313e-1 (2.58e-2) - 9.8226e-2 (3.40e-2) - 2.0511e-1 (4.52e-2) - 9.5929e-2 (3.17e-2) -5.4132e-1 (2.10e-2)
(5,10) 7.5987e-3 (4.66e-3) - 7.8632e-2 (5.37e-3) - 5.6746e-2 (1.69e-2) - 5.5326e-3 (5.44e-3) - 7.1542e-2 (1.17e-2) - 3.0908e-2 (1.29e-2) -3.3915e-1 (4.57e-2)
(5,20) 2.1425e-2 (1.39e-2) - 1.4073e-1 (8.65e-3) - 1.0166e-1 (3.27e-2) - 5.8824e-2 (3.79e-2) - 8.0611e-2 (1.90e-2) - 9.5865e-2 (2.14e-2) -5.0459e-1 (4.30e-2)

JY8

(10,10) 3.6716e-1 (3.61e-2) - 7.2034e-1 (1.25e-2) - 7.4839e-1 (4.37e-4) -7.9200e-1 (6.06e-4)+ 7.4856e-1 (3.76e-4) - 7.4741e-1 (6.25e-4) - 7.5094e-1 (5.39e-4)
(5,10) 2.0935e-1 (3.60e-2) - 7.2332e-1 (6.40e-3) - 7.4446e-1 (1.38e-3) -7.8546e-1 (1.23e-3)+ 6.8059e-1 (3.30e-2) - 7.4190e-1 (2.03e-3) - 7.4743e-1 (6.12e-4)
(5,20) 2.4255e-1 (6.11e-2) - 7.1939e-1 (1.16e-2) - 7.4512e-1 (1.31e-3) -7.6835e-1 (1.41e-3)+ 6.4240e-1 (6.56e-2) - 7.4375e-1 (1.37e-3) - 7.4839e-1 (1.06e-3)

Among these seven test problems, dMOP3, FDA1 and FDA4 are characterized by Type I,
where POS changes while POF remains invariant; dMOP2 and FDA3 are characterized by Type
II; dMOP1 and FDA2 are characterized by Type III. In these seven test problems, HPPCM also
performed well because its prediction strategy based on guided individuals has better processing
ability for such linearly changing problems. However, IMDMOEA uses a prediction strategy
based on cluster center points that enable the algorithm to converge quickly while maintaining the
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Table 5: Mean and standard deviation values of MIGD obtained by the seven algorithms on FDA and dMOP

Problem (� t; nt) PPS DNSGA2A PMS DMS PBDMO HPPCM IMDMOEA

dMOP1

(10,10) 2.6701e+0 (5.05e+0) - 2.9789e-3 (2.98e-3)= 3.4096e-3 (2.25e-3) - 6.4615e-3 (4.51e-3) - 3.6822e-3 (3.64e-3)= 6.7346e-3 (4.12e-3) - 2.3785e-3 (1.85e-3)
(5,10) 5.0256e+1 (2.83e+1) - 4.6228e-2 (2.93e-2) - 6.9298e-2 (3.18e-2) - 1.2798e-1 (5.06e-2) - 3.0997e-1 (2.38e-1) - 2.3035e-2 (1.55e-2)= 2.2734e-2 (1.20e-2)
(5,20) 3.6055e+1 (1.96e+1) - 3.9397e-2 (2.28e-2) - 6.1163e-2 (4.04e-2) - 1.1841e-1 (4.99e-2) - 3.7226e-1 (2.38e-1) -1.8422e-2 (1.25e-2)= 2.1248e-2 (1.11e-2)

dMOP2

(10,10) 4.4680e-1 (2.17e-1) - 1.1799e-2 (1.01e-3) - 6.7998e-3 (2.76e-3) - 5.6026e+0 (4.44e+0) - 2.9462e-1 (2.44e-2) - 1.8038e-3 (3.78e-4) - 5.4394e-4 (7.35e-5)
(5,10) 4.3236e+0 (1.19e+0) - 1.1584e+0 (1.03e-1) - 2.7125e-1 (1.64e-1) - 2.1052e+1 (4.95e+0) - 4.2497e-1 (1.32e-2) - 1.5007e-2 (6.29e-3) - 1.9479e-3 (3.90e-4)
(5,20) 2.3812e+0 (1.81e+0) - 8.9543e-2 (8.16e-3) - 5.0346e-2 (2.54e-2) - 1.2696e+1 (2.26e+0) - 4.4938e-1 (9.52e-3) - 1.9290e-3 (5.44e-4) - 4.2045e-4 (7.84e-5)

dMOP3

(10,10) 9.0175e-2 (2.02e-2) - 1.2645e-2 (1.05e-3)+ 4.9907e-2 (4.53e-3) - 2.6683e-1 (7.71e-2) - 8.3118e-2 (2.82e-3) - 1.5776e-2 (9.31e-4)+ 4.3822e-2 (3.76e-3)
(5,10) 3.3344e-1 (6.74e-2) - 2.6542e-2 (1.36e-3)+ 8.3539e-2 (2.34e-2) - 3.5228e-1 (8.06e-2) - 1.1482e-1 (9.14e-3) -2.0268e-2 (1.48e-3)+ 4.1525e-2 (1.55e-3)
(5,20) 2.6421e-1 (4.90e-2) - 1.9616e-2 (8.17e-4)+ 5.3757e-2 (5.29e-3) - 3.3137e-1 (7.37e-2) - 1.1661e-1 (6.09e-3) -1.5187e-2 (7.51e-4)+ 4.2495e-2 (1.72e-3)

FDA1

(10,10) 2.0478e-1 (1.13e-1) - 6.3426e-3 (6.71e-4) - 2.9966e-3 (6.64e-4) - 3.9607e+0 (2.68e+0) - 2.4849e-1 (2.43e-2) - 8.1264e-4 (9.35e-5) - 2.7320e-4 (2.20e-5)
(5,10) 2.7845e+0 (7.38e-1) - 9.3821e-1 (1.24e-1) - 6.4819e-2 (4.26e-2) - 1.4905e+1 (2.51e+0) - 4.2742e-1 (1.40e-2) - 4.7991e-3 (1.13e-3) - 7.9134e-4 (1.25e-4)
(5,20) 1.0436e+0 (4.51e-1) - 5.2323e-2 (7.45e-3) - 1.1987e-2 (7.40e-3) - 1.0056e+1 (1.43e+0) - 4.4824e-1 (8.36e-3) - 9.1355e-4 (1.66e-4) - 2.0655e-4 (2.07e-5)

FDA2

(10,10) 3.5281e-3 (2.09e-3) - 1.7155e-3 (3.49e-5)+ 2.0093e-3 (3.48e-4) - 2.1442e-3 (5.37e-4)= 2.3280e-3 (5.66e-4) - 1.8046e-3 (2.38e-5)= 1.9925e-3 (3.86e-4)
(5,10) 6.9192e-3 (3.89e-3) - 2.0276e-3 (5.84e-5) - 2.7424e-3 (6.19e-4) - 2.7949e-3 (7.10e-4) - 1.4050e-2 (7.61e-3) - 1.8930e-3 (4.67e-5) -1.8546e-3 (3.23e-4)
(5,20) 7.1690e-3 (3.46e-3) - 2.0938e-3 (8.88e-5) - 2.4014e-3 (4.42e-4) - 2.9418e-3 (8.03e-4) - 1.1033e-2 (6.06e-3) - 1.8435e-3 (3.38e-5)+ 1.7485e-3 (2.80e-4)

FDA3

(10,10) 3.0620e-1 (1.76e-1) - 4.8717e-3 (2.51e-4) - 4.5870e-3 (3.09e-3) - 8.5919e-1 (2.87e-1) - 2.4591e-2 (9.79e-3) - 1.9769e-3 (7.44e-4) -5.3232e-4 (5.98e-5)
(5,10) 1.2946e+0 (5.33e-1) - 1.9134e-2 (9.36e-4) - 2.2877e-1 (1.30e-1) - 1.0908e+0 (2.77e-1) - 1.0752e-1 (4.05e-2) - 1.9736e-2 (5.86e-3) -3.4702e-3 (1.53e-3)
(5,20) 1.0891e+0 (4.73e-1) - 7.2550e-3 (4.06e-4) - 3.5292e-2 (2.31e-2) - 9.0295e-1 (2.83e-1) - 9.0426e-2 (1.14e-2) - 2.7845e-3 (1.49e-3) -3.6582e-4 (1.75e-4)

FDA4

(10,10) 1.3176e+1 (4.94e-1) - 1.1455e+1 (2.93e-2)+ 1.1872e+1 (1.31e-1) - 1.1028e+1 (2.19e-1)+ 1.2137e+1 (1.06e-1) - 1.1831e+1 (2.36e-2) - 1.1709e+1 (1.52e-2)
(5,10) 1.5995e+1 (7.19e-1) - 1.3002e+1 (1.89e-1) - 1.2332e+1 (3.46e-1) - 1.4958e+1 (1.58e+0) - 1.6872e+1 (2.39e+0) - 1.0581e+1 (2.22e-2)+ 1.1387e+1 (9.56e-3)
(5,20) 1.3467e+1 (4.51e-1) - 1.1862e+1 (6.91e-2) - 1.2051e+1 (2.22e-1) - 1.3416e+1 (9.59e-1) - 1.5962e+1 (2.31e+0) - 1.1201e+1 (3.28e-2)+ 1.1590e+1 (2.19e-2)

Table 6: Mean and standard deviation values of MHV obtained by the seven algorithms on FDA and dMOP

Problem (� t; nt) PPS DNSGA2A PMS DMS PBDMO HPPCM IMDMOEA

dMOP1

(10,10) 5.4050e-1 (1.25e-1) - 6.6109e-1 (2.70e-3)= 6.5494e-1 (1.08e-3) - 6.6546e-1 (1.43e-3)+ 6.5996e-1 (1.66e-3) - 6.5884e-1 (1.31e-3) - 6.6240e-1 (9.48e-4)
(5,10) 1.0466e-1 (8.58e-2) - 6.5208e-1 (3.52e-3) - 6.4177e-1 (7.80e-3) - 6.5460e-1 (1.89e-3) - 2.9575e-1 (1.80e-1) - 6.5583e-1 (1.01e-3) -6.5734e-1 (1.23e-3)
(5,20) 1.1497e-1 (7.32e-2) - 6.5154e-1 (2.43e-3) - 6.4202e-1 (4.12e-3) - 6.5079e-1 (3.26e-3) - 3.0578e-1 (1.39e-1) - 6.5661e-1 (9.11e-4) -6.5773e-1 (6.87e-4)

dMOP2

(10,10) 2.6055e-1 (4.68e-2) - 5.3513e-1 (4.49e-3) - 5.7078e-1 (7.09e-3) - 1.5486e-1 (2.66e-2) - 2.8941e-1 (1.62e-2) - 6.1991e-1 (4.12e-3) -6.4683e-1 (6.52e-4)
(5,10) 7.2501e-2 (1.82e-2) - 2.1720e-1 (3.05e-3) - 3.8727e-1 (4.82e-2) - 2.9844e-2 (7.89e-3) - 1.9638e-1 (7.75e-3) - 5.4770e-1 (1.15e-2) -6.1847e-1 (1.31e-3)
(5,20) 1.1750e-1 (2.50e-2) - 3.7924e-1 (1.06e-2) - 4.9220e-1 (3.48e-2) - 6.5555e-2 (1.43e-2) - 1.7648e-1 (6.23e-3) - 6.1696e-1 (3.66e-3) -6.5214e-1 (7.49e-4)

dMOP3

(10,10) 5.5667e-1 (1.35e-2) - 7.2202e-1 (3.14e-3)+ 5.8256e-1 (1.26e-2) - 3.9107e-1 (3.79e-2) - 5.5597e-1 (3.73e-3) - 6.8582e-1 (4.20e-3)+ 6.3088e-1 (6.29e-3)
(5,10) 3.7345e-1 (2.08e-2) - 6.2917e-1 (3.64e-3)+ 5.1939e-1 (3.14e-2) - 3.6452e-1 (2.51e-2) - 5.0141e-1 (1.90e-2) -6.6386e-1 (4.67e-3)+ 6.2245e-1 (3.67e-3)
(5,20) 3.9261e-1 (2.61e-2) - 6.7113e-1 (3.32e-3)+ 5.8686e-1 (1.49e-2) - 3.7503e-1 (2.53e-2) - 4.9000e-1 (1.02e-2) -6.9319e-1 (3.89e-3)+ 6.3033e-1 (3.71e-3)

FDA1

(10,10) 4.8419e-1 (6.57e-2) - 7.7242e-1 (2.79e-3) - 8.0311e-1 (4.32e-3) - 3.0115e-1 (4.11e-2) - 4.9867e-1 (2.60e-2) - 8.3871e-1 (1.78e-3) -8.5475e-1 (5.34e-4)
(5,10) 1.6619e-1 (2.31e-2) - 4.5080e-1 (3.99e-3) - 6.3046e-1 (4.77e-2) - 1.3624e-1 (1.28e-2) - 3.3148e-1 (1.18e-2) - 7.9402e-1 (5.80e-3) -8.3932e-1 (1.32e-3)
(5,20) 2.6572e-1 (3.70e-2) - 6.2640e-1 (8.68e-3) - 7.5844e-1 (2.68e-2) - 1.5820e-1 (1.65e-2) - 3.0110e-1 (7.72e-3) - 8.3745e-1 (2.26e-3) -8.5899e-1 (5.36e-4)

FDA2

(10,10) 1.1198e+0 (1.30e-2) - 1.1341e+0 (2.64e-4)+ 1.1276e+0 (5.04e-3) - 1.1268e+0 (6.68e-3)= 1.1249e+0 (7.14e-3) - 1.1320e+0 (3.61e-4)+ 1.1319e+0 (3.30e-3)
(5,10) 1.0999e+0 (1.77e-2) - 1.1321e+0 (2.97e-4) - 1.1236e+0 (4.78e-3) - 1.1239e+0 (5.14e-3) - 1.0497e+0 (3.25e-2) - 1.1311e+0 (5.55e-4) - 1.1323e+0 (3.35e-3)
(5,20) 1.1014e+0 (1.18e-2) - 1.1318e+0 (3.69e-4) - 1.1257e+0 (4.80e-3) - 1.1236e+0 (6.94e-3) - 1.0601e+0 (2.39e-2) - 1.1315e+0 (4.42e-4) - 1.1320e+0 (3.41e-3)

FDA3

(10,10) 4.5678e-1 (5.41e-2) - 9.9116e-1 (4.08e-3)+ 8.0333e-1 (2.95e-2) - 3.6825e-1 (7.03e-2) - 7.4970e-1 (1.85e-2) - 8.6324e-1 (8.49e-3) - 9.5336e-1 (9.21e-3)
(5,10) 2.4247e-1 (2.53e-2) - 7.9985e-1 (4.85e-3) - 4.7180e-1 (8.82e-2) - 2.4137e-1 (1.57e-2) - 3.0903e-1 (1.64e-2) - 7.0445e-1 (2.70e-2) -9.0369e-1 (8.23e-3)
(5,20) 3.1604e-1 (4.90e-2) - 9.1519e-1 (5.48e-3) - 7.3228e-1 (7.76e-2) - 2.7586e-1 (4.31e-2) - 2.9281e-1 (2.13e-2) - 8.6203e-1 (1.30e-2) -9.7643e-1 (1.04e-2)

FDA4

(10,10) 2.3699e-1 (1.19e-2) - 2.6580e-1 (4.89e-3) - 2.7613e-1 (9.29e-3) - 2.2218e-1 (1.54e-2) - 2.5247e-1 (7.04e-3) - 3.4972e-1 (3.04e-3) -3.6447e-1 (3.52e-3)
(5,10) 1.2249e-1 (6.36e-3) - 1.6894e-1 (4.26e-3) - 2.2663e-1 (1.85e-2) - 8.6568e-2 (7.63e-3) - 9.1265e-2 (8.41e-3) - 3.3975e-1 (4.74e-3) -3.5644e-1 (2.60e-3)
(5,20) 1.8145e-1 (1.60e-2) - 2.2119e-1 (4.26e-3) - 2.7935e-1 (1.26e-2) - 1.2847e-1 (1.25e-2) - 8.9488e-2 (6.28e-3) - 3.5607e-1 (2.04e-3) -3.7018e-1 (2.26e-3)

Table 7: Mean and standard deviation values of MIGD obtained by the seven algorithms on F

Problem (� t; nt) PPS DNSGA2A PMS DMS PBDMO HPPCM IMDMOEA

F5

(10,10) 3.5959e+1 (1.68e+1) - 8.0191e+0 (6.23e-1) - 1.5029e+1 (5.82e+0) - 1.9327e+3 (8.08e+3) - 1.1931e+2 (8.76e+0) - 4.5768e+0 (1.33e+0) - 1.4597e+0 (3.47e-1)
(5,10) 1.8307e+2 (5.34e+2) - 4.3024e+1 (8.36e+0) - 2.3067e+1 (7.99e+0) - 1.3265e+2 (1.48e+2) - 1.2853e+2 (6.99e+0) - 1.9838e+1 (4.27e+0) - 4.8690e+0 (8.77e-1)
(5,20) 4.7678e+1 (1.71e+1) - 1.6716e+1 (6.09e+0) - 1.0287e+1 (4.31e+0) - 1.0849e+2 (1.47e+2) - 8.2801e+1 (3.98e+1) - 3.3661e+0 (1.32e+0) - 5.5501e-1 (1.13e-1)

F6

(10,10) 1.1261e+1 (1.04e+1) - 3.6036e+0 (8.81e-1) - 3.6733e+0 (2.15e+0) - 4.4609e+1 (5.82e+1) - 2.5633e+1 (4.95e+0) - 9.3439e-1 (2.15e-1)+ 1.1792e+0 (2.26e-1)
(5,10) 9.3730e+2 (4.26e+3) - 3.2214e+1 (1.96e+0) - 8.0569e+0 (2.31e+0) - 6.2755e+2 (3.92e+2) - 2.3246e+1 (5.16e+0) - 4.9415e+0 (1.85e+0) - 2.6346e+0 (3.63e-1)
(5,20) 2.5951e+1 (1.08e+1) - 6.0374e+0 (1.70e+0) - 3.0968e+0 (2.15e+0) - 1.3210e+2 (1.52e+2) - 1.1154e+1 (6.82e+0) - 7.3437e-1 (2.53e-1) - 4.1833e-1 (9.52e-2)

F7

(10,10) 1.5717e+1 (1.83e+1) - 4.3741e+0 (9.71e-1) - 4.7487e+0 (1.76e+0) - 1.0103e+2 (1.45e+2) - 1.8366e+1 (4.42e+0) - 7.7029e-1 (2.60e-1) - 5.3874e-1 (1.36e-1)
(5,10) 5.4377e+1 (4.91e+1) - 1.4368e+2 (6.79e+1) - 2.2166e+1 (1.04e+1) - 1.1727e+2 (3.74e+1) - 2.2605e+1 (2.61e+0) - 7.0340e+0 (2.06e+0) - 2.5324e+0 (4.49e-1)
(5,20) 2.5489e+1 (1.49e+1) - 8.4900e+0 (1.48e+0) - 5.9522e+0 (6.31e+0) - 1.7453e+2 (8.41e+1) - 2.5016e+1 (2.04e+0) - 6.8159e-1 (2.98e-1) - 2.7500e-1 (6.64e-2)

F8

(10,10) 1.9143e-1 (5.00e-2) - 1.1501e-1 (9.19e-3) - 4.9444e-2 (2.94e-3) - 4.0808e-2 (3.73e-3) - 1.2040e-1 (1.05e-2) -1.3446e-2 (2.75e-4)+ 1.7648e-2 (7.67e-4)
(5,10) 8.9467e-1 (1.81e-1) - 3.6121e-1 (1.44e-2) - 1.4947e-1 (8.42e-3) - 2.7076e-1 (2.89e-2) - 9.8405e-1 (2.92e-2) - 3.0469e-2 (1.10e-3)= 3.0030e-2 (1.94e-3)
(5,20) 3.4112e-1 (8.57e-2) - 1.8853e-1 (7.13e-3) - 6.1469e-2 (5.11e-3) - 7.3440e-2 (7.13e-3) - 1.0174e+0 (1.44e-2) - 1.3046e-2 (3.25e-4)+ 1.3660e-2 (5.10e-4)

F9

(10,10) 2.5498e+0 (9.98e+0) - 1.5346e+0 (1.02e+0) - 1.3382e-1 (6.76e-2) - 4.8556e+1 (4.54e+1) - 6.2092e-2 (4.25e-2) - 6.7476e-3 (4.88e-3)+ 3.7788e-2 (3.61e-2)
(5,10) 4.3125e+2 (1.36e+3) - 5.9048e+1 (4.32e+1) - 2.2748e-1 (9.36e-2)+ 8.5900e+2 (3.60e+3) - 4.3720e-1 (1.59e-2)+ 1.7503e-2 (8.14e-3)+ 2.4718e+0 (7.44e+0)
(5,20) 1.2438e+2 (5.64e+2) - 3.2674e+0 (2.98e+0) - 4.9244e-2 (4.58e-2) - 6.2370e+0 (3.80e+0) - 2.5117e-1 (3.35e-2) - 1.2412e-3 (9.70e-4)+ 2.3662e-3 (1.86e-3)
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distribution of the population. This feature contributed to IMDMOEA's superior MHV indicators
compared to HPPCM.

Other algorithms, such as DNSGA2A, also have some advantages over dMOP3 and FDA2
due to the introduction of random individuals in this algorithm to strengthen the response to
environmental changes. However, when the change frequency� t decreases and the change speeds
up, IMDMOEA showed a more robust ability to track POS changes.

5.3. Performance on F Test Suite

Each algorithm's MIGD and MHV values on the F5-F9 test problems are shown in Table 7
and Table 8. It can be seen from Table 7 that for the 15 variations of the test problems F5-F9,
HPPCM is a strong competitor of IMDMOEA.

F5-F9 are all Type II problems, and there is a nonlinear relationship between the decision
variables of F5-F9 test problems, making these problem more complicated. The environmental
changes in the F5-F8 test problems are relatively mild, and their POS shape and movement
distance during continuous periods are similar. However, for F9 testing issues, the POS may
jump from one area to another.

HPPCM's precision-controllable mutation strategy gives it a better processing e� ect on this
problem. However, Table 8 shows IMDMOEA has a signi�cant advantage in the MHV indicator.
This is because, in IMDMOEA, the mutations are induced in the population according to the
changing trend of the POF so that it can more e� ectively deal with complex POS changes.

5.4. Visual Analysis

To analyze the performance of the algorithms, the MIGD curves of these seven advanced
algorithms and the scatter diagrams of the population distribution have been drawn in Fig. 6,
Fig. 7 and Fig. 8.

Fig. 6 illustrates the MIGD curves of the seven advanced algorithms in six test problems. It
is observed that IMDMOEA exhibits minor �uctuations in the IGD values compared to the other
algorithms. This indicates that IMDMOEA had good tracking and prediction performance for
both the POS and the POF. The algorithm could e� ectively maintain a close approximation to
the true POF throughout the optimization process.

Two representative test problems, FDA1 and F9, are selected to plot the population distri-
bution, with (nt,� t)=(5,10). There is a linear correlation between the decision variables for the
FDA1 test problem and a nonlinear correlation between the decision variables for the F9 test
problem. In Fig. 7, it is easy to �nd that IMDMOEA shows good convergence ability at the
initial moment of the algorithm's operation. In Fig. 8, the green dots are the populations gen-
erated by the algorithm, and the purple lines are the corresponding POFs of the problem. The
populations generated by IMDMOEA more closely approximated the real POFs of the problem.

5.5. Component Analysis

The algorithm proposed in this paper contains two key components. In order to verify the
e� ectiveness of each component, ablation experiments were designed for analysis. RM-MEDA
is a static optimizer that does not include a dynamic response strategy. IMDMOEA(V1) is a
variant that only includes a prediction strategy based on the cluster center point, and IMDMOEA
is a complete algorithm that includes a prediction strategy based on the cluster center point and
an induced mutation strategy.
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