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Abstract:

This PhD thesis focuses on the desigtjmization, and additive manufacturing (AM) of lattice
structures and mechanical metamaterials. These materials, characterized by their cellular nature,
possess unique properties primarily determined by the design of their individual cells rather than
the properties of the bulk material from which they are constructed. Mechanical metamaterials
exhibitpropertiesvhich are uncommon in natytiadicatingaspectrum of potential applicatians

This study proposes variousodelling strategiespased orexplicit, implicit, and parametric
functions for the design of lattice structures and mechanical metamaterials. The resgfonse
these structureare investigatedthrough numerical simulatienand experimentalesting For
tailored responsg these structures are tuned using an optimization straieggg a genetic
algorithm (GA). The study develops, simulates, and tests a range of different aedipiting

unique properties, such as programmable permeability, auxetic response, astffdaas
characteristics. Various AM processes, includiDgyital Light Processing (DLP)Fused
Deposition Modelling (FDM), and Selective Laser Sintering (SLS), are employed for the
fabrication of the designed lattice structures and metamaterials.

The thesisbegins with a comprehensive literature review on lattice structure and mechanical
metamaterial design for AM. Subsequently, the mechanical properties of different lattice
structures fabricated through SLS and DLP are investigated. The numerical anchertari
results from compression testing are compared and discuesedlingthe effect of these AM
proceses onthe mechanical response and the discrepancy between numerical and experimental

outcomes.

Evolvingthe understanding of the mechanisahaviouof thelattice structures, a multibjective

GA is utilizedto optimize the shape of a bedgntreccubic (BCC) lattice structure for maximum
stiffness and minimum von Mises stress. An implicit maofeBCC is integrated withFinite
Element Analysis (FEA) and GA tgerform shape optimizatiorfor the bestresponse. The
numerical results obtained from this method are compared with those of a classical model of a
BCC structure to assess the efficiencyhef presented optimization approach. These findings are

supported by experimental testing of selected designs fabricated through DLP.

The methodology is further applied to the design of a 2D auxetic metamégatiaingvariable
permeability. A parametric equation defines the unit cell of the auxetic structure, which is then
utilized as a programmable filtering medium capable of filtering particles of specific sizes. GA is

employed to optimize the geometry of the auxstiacture for effective particle filtration under



uniaxial applied strain. A prototype is fabricated through FDM and tested to evaluate the

effectiveness of the developed filtering medium.

Furthermore the design methodology is gandedto the development of 3D metamaterials
offering aspectrumof mechanical properties. An expli@guationbased modetonsisting of
three design variables is employedcanstruct a unit cellThe effect of varying each design
variable on the resulting geometry atalcorrespondingnechanical response is investigated. A
variety of design configurationpossessingunique propertiesare presented and discussed,
including 3D auxetic structures and dgtiffness materials, which are designed, simulated, and

experimentally tested.

This work has achieved significant milestones, including the creation of a versatile programmable
lattice metamaterial designed for various functions and applications. An important objective was
met by integrating a mulbbjective optimization approach,eamlessly incorporating a
parametric design algorithm into the optimization process. To demonstrate the practicality of
these lattice metamaterial designs, a variety of applications were explofalrication of the
developedmetamaterials through\M processes The study concludes by showcasing the
proposed programmable metamaterial designs, categorizing lattice metamaterials systematically,
evaluating current limitations in metamaterial design and fabrication technologies, and offering
recommendations for fute research directions. These recommendations focus on expanding and

implementing innovative techniques and tools for metamaterial development.
Keywords:additive manufacturing, auxetiahjal stiffnessgenetic algorithmimplicit modelling,

parametric design, ditice structures, metamaterialsnorphic metamaterial optimization,

programmable materials
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Chapter (1) Introduction

1.Chapt ewbduciof 1)

This chapter provides an overview of the research aims and objectoe® fundamental
guestions whiclwill be answered in thisesearchand the structure of this thesighis chapter
shed some light onthe background and motivation behind this research simolws the
multidisciplinary knowledgethat is gained andutilized to accomplish the objectives of this
researciwork.

1.1. Background and motivation

In recent years, there has been signifigartgress and innovatiom metamaterialdor the
research and engineering community. However, the design and optimization @sdoess
metamaterialgrea complexsubject. e existing knowledge in this field is fragmented, lacking

a definitive methodology, criteria, classification for design, design technigtaglardization,

and optimization methods. Typically, the design of metamaterials is obtained through intuitive
CAD modelling oroptimizationtechniques such as topology optimizatiansigenerative design

to name a few.

Currently,severalresearchers have begun exploring the use of artificial intelligendevidop
and optimizemetamaterial designfor tailored applicationsHowever,a deeper relationship
between the design variables andrtherrespondingnechanical performance has not been fully
uncovered Additionally, numerous designs have beatavelopedfor specific objectivedike
enhanced toughness, controlled flexibility, heat or energy dissigatitme1) in order to address
the uniqueapplications making itconfusingto select and apply the most suitable design for

unique or custonmapplications.

Toughness

Flexibility Response
rate
Strength Dissipation

Figure 1 An ideal performance evaluation chart for lattice metamaterial design that is efficient
and outperform in various dimensions of mechanical properties.
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Chapter (1) Introduction

Given these motivations, this research aims to address these challenges by proposing highly
programabldattice structures andnetamaterial desigrthat incorporate powerful optimization
toolslike genetic algorithmBYy leveraging advancemptimizationalgorithms, the research aims
to uncover thempirical relationshifpetween desigparameterand mechanical performance,

enabling more efficient and effective desidoislattice structures and metamaterials

Furthermore, this research seeks to establish a comprehensive framework that encompasses a
wide range of material applications. By developing a versatile and adaptable metamaterial design
approach, it aims to meet the unique requirements and modern demhaadsus engineering

and research applications. Theoposed embedded design adimization technique has the
potential toexpand the knowledg# latticemetamaterial design, offering a promising avenue for
further advancements the subject oflattice structureand metamaterials

(C) Transport —~
system Catalyst

support
11

|
High porosity
L rf
(b) nghtwelght arge surface area e vond

(al - ,\ ’_ /space

2y b
Sl ngh energy -}
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Intrinsic
Tailorable — Thermal
properties Phctomc/ protection system
Phonomc

Manne application
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. Neganve Neganve N 9
°'55°n 's ratio compressibility (/,EJ 2
: \ | PR
Cell growth substrate ( » E)@

j 17 n
. o lmy >
- Adding weight  Contraction Wave insulators
Protective armor Mechanical actuator

Figure 2 Overview of mechanical metamaterials (a) design and structures, (b) physical and
mechanical properties, and (c) various applicati¢tls

While the subject of metamaterials has seen an exponential advancementatliteraisre gap.

A literature gap that points towards an absence of a versatile lattice metamaterial design that holds
the recognized value across multiple domains of the science and engineering. Throughout existing
literature, researchers and engineergeheonceived a multitude of designs, each tailored to
address distina@ndspecialized applications or functionalities. The task of identifying an optimal
lattice metamaterial design tailored to a specific purposxgustive The currentliterature
eitherlacks the explicit development of a singular, multipurpose design, or the underlying concept

has not yet attaineal goodevel of maturity.
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Chapter (1) Introduction

In essence, the objective of this research is to bridge the existing gap between lattice metamaterial
desigrs and their potential in modern applicatiofis is achieved through the proposal of an
exceptionally versatile and programmable design methodology, seamlessly integrated with
optimization algorithms such as Genetic Algorithms (GA). The advent of a programmable and
versatile lattice metamaterial design represents a milestone wittsahlifeetof modern material

design. It addresses the challengesanl bymodernfunctional material@and theirapplications

across a wide spectrum of industrikat uses materials

Adopting a broader and forwaftdoking perspective, this study seeks to contribute to the
evolution of a moresystematicand comprehensive approachvesdsmetamaterial design. By
furnishing a framework for standardizationaitcomplitiesto tacklemodernchallenges while
adaptinghe varied demander latticemetamateriahpplications across research and engineering

domains.

1.2. Aims and objectives.

The principle aim of this work ito developa methodology fotthe design and optimization of
programabldattice structures anthetamateria These latticenaterialsaremultifunctional and
ableto transforminto different geometrical configuratione addressa wide varietyof tailored

applicationsandresponse objectives

The following aresome ofthe key objectivesof this researchwvork:

Studyandunderstandvidely used designs fdattice structures anthetamaterials.
Understandinghe differentdesign approaches flattice metamaterials.
Developdifferentmethodologies for lattice structuaed metamatrial desigrs.

Development ofeverabprogramabldattice structures anthetamaterial

= =4 4 A -

Apply and embed auitable optimization techniq(s) to optimize theattice designfor

enhancednechanical response(s)

1 Developalgorithnms and software applicationsingMatlab 2021 R® to design
analyseand optimizdattice metamaterial faspecializedapplications.

1 Deploy theproposedattice metamaterial design and optimizatioathod invarious
applications to demonstrate the significance of this work.

91 Developseveral practical examples to demonstratenthelty of this work and its

valuein industrial applications.
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1.3. Significance and novelty of tlis research

This thesis presentsfew lattice structureand metamaterialesigntechniquesand optimization
methods.The aim is to achievelesignswhich are transformablénto different shapes by
manipulating their multiple design variableswhich can be referred tas dmorphic
me t a ma t ¥he incarposafion of multiple design variables allows for achie@ngique
blendof mechanical responses and functionaliti&sch lattice materials haagpromising future

in industrial applications.

Furthermore, this thesis introducdstiice structur@esign classification method that categorizes
lattice designs based on the number and types of design varatdesher relatedactors like
theimpact ofadditive manufacturing technologies

In addition to the desigmethodologyaspect, the optimization part of this thesis is noteworthy
A multi-objective optimizatioriechniqueis developedThisembedded design amgbtimization
methodologyenables the simultaneous optimization of multiple degigrametergproviding
greater versatility and flexibility

Figure3is an abstract representation of the different dimensions of the research disciplines which

are studied and utilized to achieve the objectives of this research.

geometries Disciplines

Additive Unit-cell Lattice Functional
. design structures components
manufacturing ‘
P —
{Experimentation p—— ' bl Metamaterials L —————— j‘
and testing ! Implicit " i
i C |
! |
I
Applications ! i
pp Ui Explicit Mathematical Research

Material
science
Vibration Particle [ 1
isolator Fifter Al { mechanical
bomos i (artificial intelligence) properties

'
I

Stent Impact

design resistance s T v — f ——
| Topology Genetic Machine 1
| | optimization algorithm learning |
.- - J

Figure 3 Different disciplines of science addressed in this research work.
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1.3.1.Research problems and gaps in current knowledge

T

Currently, in the literature Here isalack ofsuchauniquemorphicdesign thaexistswhich
is transformable tdlifferent shape configurationsnd can be optimized fanultiple
objectivedor tailored applications

There is nanutually agreedr standardiedmethodologyto construct differenvariants of
the lattice metamateritdilored for specializedbjectivesandapplications

The current optimization techniquiesthe available literaturarecomplex orconstraired
to very specific designleading towardicused otimited applicatiors.

Therelationshig between the desigmarametersdesign variants and tlimplicit relation

between the design contprameterand the mechanical responses are not fully explored.

1.3.2.Research questions

)l
T
1

Why lattice structuresarevaluablefor modern applicatiors

Why is there ademandor programmabléattice structure®

Why a standardize stratedy requiredto design categoriseandchoose the righattice

material for the right applicatién

Why is there arequiremento categorizdattice designs with respect to the number of

design variableand other factofs

Why addr ess Poi s s principalprapatiedf atticestructuraseando f t h e
metamaterials?

Why it is importantto optimize the desigaf mechanical latticstructures and

metamaterialsising techniques of artificial intelligenee

To further demonstrate the significance of these fundamental research questions following are

some of the preliminary comments that shed some light on this subject.

1

Lattice structures andnetamaterials arbecoming efficient and desirable candidafier
modern applications due to their exceptional mechanical properties and unique
functionalities. They offeunmatchedpportunities for tailoring materidehaviour such as
negative refraction, acoustic cloaking, and energy absorption. Their ability to exhibit
properties not found in natural materials makes them highly desirable for applications in fields

like aerospace, automotive, and structural engineering.
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1

There is aconvincingneed for programmable lattice metamaterials because they allow for
adaptive and reconfigurable structures. By manipulating their design variables, these
metamaterials can be transformed to suit different conditions or requirements. Programmable
lattice meéamaterials offeenormougotential for developing smart materials and structures

that can adapt to changing environments, enhancing their performance and functionality.

The need for a mathematical model to design or choose the right metamaterial arises due to
the complex and intricate nature of these materials. A mathematical model provides a
systematic and reliable approach to predicting and undenstaride behaviour of
metamaterials, facilitating the selection of the mappropriatedesign for a specific
application. Itfacilitatesengineers and researchers to optimize performance, durability, and

other desired properties based on mathematical principles and simulations.

Categorizing metamaterial designs with respect to the number of design variables is essential
for better understanding and organizing the vast design space. By classifying designs based
on the number of variables involved, it becoms@sightforwardto compare and evaluate
different designs, identify common patterns, and establish degigrciples This
categorization aids imodernizingthe design process and enables more efficient exploration

of the design space, leading to improved design outcomes.

Poisson's ratio is considered one ofphiacipalproperties of mechanical metamaterials due

to its significant influence on materibehaviourand structural response. It measures the
material's transverse deformation in response to axial deformation and is crucial for
understanding the material's compressibility, deformability, and overall mechanical
performance. Addressiniis propertyallows for the precise control and manipulation of
mechanicalproperties in metamaterials, enabling the design ofctsires with desired

mechanicaperformance

Artificial intelligence (Al) is increasingly being recognized as a valuable tool for optimizing
lattice structures anchetamaterial designs. The complexity amdlti-dimensional nature of

the design space make traditional optimization technigbsslete Al, with its ability to
analyselarge volumes of data and identify complex patterns, offers new avenues for
optimizing lattice metamaterial designs effectively. By employing Al algorithms, engineers
and researcheare able toexplore the design space mae#iciently, recogniseoptimal

designs, andattain improved performance and functionality of metamaterials. Al
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optimization techniques provide valuable insights and accelerate the dgsignization
process, reducing costs and time associatedamitlrentionaiterationsmethods for design

improvements

1.4. Thesis structure and map
This section providesie map of this thesishich isgiven below. This map shows the relaship

between different disciplinghat are applied tachievethe objectives of this research.

Chapter (1): This chapter discgss the aims and objectives oighnesearch thesighe novelty
andgeneral ideathe roadmap,key fundamental research questiamsl the significance of it
research.

Chapter (2): This chapter provides aomprehensivditerature review regardingellular

structuresjattice structures, stamaterialsand auxetic metamaterialdddressing thedesign

types, design methods, optimization methqusysical and mechanicakroperties, fabrication
techniquesndthe current role of lattice structures in differapplications.

Chapter (3): This chapterepresentdifferent methodologes to design and optimizéattice
metamaterial It also presenta framework forclassificationmethod for a new generation of

lattice metamaterials

Chapter (4): This chaptegives an insight into the strdtased lattice structurdike BCC, FCC
and Octetand evaluates the impact of two different AM processes on the mechanical properties

of thelattice structures.

Chapter (5): This chaptercoversa uniquedesignstrategybased on multiparameter implicit
modellingof BCC structureandutilising multi-objectivegenetic algorithnoptimization method

to enhanceéhe mechanical performance tife BCC lattice structures.
Chapter (6): This chapter provides nhovel auxetic metamaterial design that is applied in particle

filtering media. This auxetic filteis developedand optimized based on the filteringnedia

characteristics

27



Chapter (1) Introduction

Chapter (7): This chapter represents a novel design of metamaterial which is highly morphic and
transforns into various shapegonfigurationsto comply with multiple objectives. This

programable desigmas the potential toeappliedin many applications due to its versatile nature.

Chapter (8): This chaptepresents the key achievements of this research workranities high
level summay. In addition to thatthe potential applicati@and examples are provided based on
the proposediesignand optimization techniquesAt the end of this chapter, a comprehensive
conclusion, discussion that addresseshe work limitations and future research directiorse
portrayed
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> Ch a P {  @ikature réviez )

In this chapter, a detailed literature review has been conducted, which begins with the introduction
of cellular structures and graduaéltpand and explorethe subject ometamaterials, including

their design, types, optimizatialechniques properties, and applications. This literature also
sheds light on various ANechnologies and their respective materfafslattice structures and

metamaterials

2.1. Introduction

This literature develops an understanding of a wide spectrum of cellular structures and their types,
designs, optimization, properties, AM process and applications. In this ¢lzapide variety of
literature is reviewed to provide useful knowledge that highlights the current design
methodologies for a broad spectrum of applications and functionalities. This literature begins with
an understanding of cellular structures, graduakpands towards lattice structures, and
consequently foces on various meltanical metamaterial designs, classification, optimization
techniques, manufacturing processes, and applications in various disciplines of science and
engineeringThe subject of metamaterials is focusedhis literature because modern industrial
demands require sophisticated materials and design strategies to fulfil thygavierg demand

for specializedapplications. However, conventional matesiahd designs are not sufficient to
address these objectives. For instance, Negative Refractive Index [NRBnd negative

Poi sson6s [3. dhesegrodemed Rrg positive for the most engineered and natural
materials with some exceptiofy but in many tailored applicationesncommornproperties are
required.Hence, exploring theliterature regardingnetamateriallays an important role to
expand and innovate in thsubject. As this literature review moves forward, is worth
mentioningthe most recent advancemeitt lattice metamaterialhatcan be categorized into

four main dimensions:

Advancement in design and optimization strategies.
Recent advancement and discoveries in lattice metamaterial properties.

Advancement in fabrication techniques.

N

Discovery and improvement of the new applications.
Especially n the past few years, a significant interest of the researchers and engineers is seen for

the lattice metamaterials due to their future potential in various domains of science and

engineering. AlRifaie et al. [5] represented a great review of lattice metamaterials focusing on
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|l attice material sd propert i e dgoshowdase the potemtiat i on
of lattice metamaterialesignsOn AM side of the metamaterialé\skariet al. [6] exhibited state

of the art manufacturing technologies of the lattice metamaterials. Similarly, Zhou ] al.
presented an exceptional literature addressi
technologies and set and excellent example for use of metamaterials in modern applications.
Wangetal. [B]demonstrated an excellent example of

properties, fabrication, and applications

The literature primarily addresses four dimensions ofldttece materialswhich areoutlined

below:
1 Understand @sign methods;lassification and optimization techniques.
1 Explorethe wide spectrum of physical and mechanical properties.
91 Discover fbricationprocessethrough AM and other technologies
T Identify versatile nature adpplicationsin research and engineerifiglds.

2.2. Insight into cellular structures

Oneof the earliestypes of researalegarding porous materiasd the introduction of the concept
officel | ul ar arerdprneserted byr Gibsod, Ashby, Evans and Hutchifispri10] &
[11]. Cellularstructuresare made from smalkpeatingporousstructuresvhich can be observed
in nature, for instance, tree stems, spangeral reefs, cork etc. Thesellular structuresre
categorised as stochastic structures studied by Ashbi[12]. However, mammade cellular
structures are gaining popularibecause ofheir versatility by addressing several dimensions

presented irigure4.

Cellular structures

Types & Designs Properties Fabrication Applications

Figure 4 Addressable dimensions of the cellular structures.

The properties of these cellular structures mainly depend upon the porosity and n#tene of

geometryWenijinet al [13] categorised the cellular structures and the lattice structures as shown
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in Figure5. They also suggested the best suitable designs and design methodologies for lattice
structures while considering suitable AM processes. Agtlgl. [14] worked on the metallic

cellular foams that showed the fabrication processes by the inclusion of air or other gaseous
substances into the solid material to gain desirable stiffness while reducing the weight of the
material. Davie®t al.[15] calculated the porosity of metallic foams, which raafgem 40% to

98% porosity. These foam structures are common and can be fabricated in various shapes and

sizes, for example, honeycosmltriangular/square/hexagonal prisms, and tetrahedrons.

Cellular
solids
r 1
Stochastic structure Non-stochastic
(foam) (lattice structure)

Open-cell Closed-cell 2D lattice 3D lattice
foam foam structure structure

e T

<,
P Tl
_‘.‘.*. 'f}&’ﬁ ::qh“

Figure 5 Classificationof cellular solidg13] © 2016 IEEE

2.3. Insight into lattice structures

Lattice structuresire made of small spatially distributed and repeating interconnected structures
calledunit cells A unitcell represents the overall properties of the lattice structure material. Some
of the commonly used lattice structure designs are discusdeanay al.[16]. They studied the
uniform and noruniform lattice structures, desigiptimizationmethods, fabrication processes
and applications. They showed that commonly thereaeuswaysin which lattice structure
aredesigred For instancedesign throughCAD modelling, through rathematical modellig,
throughoptimizationproceses like topology optimizationVoronoitessellation, Size Matching

and Scaling (SMS), Size Gradient Method (SGM) Homogenization Optimization, and
Construction (HOQ A hierarchy of celllar and lattice structures presented irf-igure6. This
hierarchy shows two main categories of cellular structures which are Stochastic and non
stochastic. Stochastic structuresléefoam structuremade frontandomshapeand distribution

of open or closed cell©n the other sideyonstochastic materialare constructed froitinewell-

defined cell geometry and tloederly cell distribution across the lattice the spatial domain
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Cellular structures l

J

' !

non-Stochastic

Stochastic (foam) (lattice structures)

' ! ' '

Open-cell foam ‘ Closed-cell foam 2D lattice structures 3D lattice structures
, : v , v
Strut based lattice Strut based lattice .
structures structures TPMS lattice structures
R ! .
Body centered cubic Face centered cubic Edge centered cubic

structures (BCC) structures (FCC) structures (ECC)

R T ' R T '
Primitive I-WP Gyroid Diamond

Figure 6 Hierarchydiagram for the various types of cellular structures.

Unlike stochastic structures, lattice structures are convenient to design, simulate, optimize,
fabricate, and utilize in tailored applicatiobecause of their discrete geometric characteristics
Therefore, many of the researchers have developed various designs of lattice structures to address

different dimensions ahis subjectpresented itfrigure?.

Lattice
Structures

Figure 7 Four subjects that are addressed in the literatieéiew to studyattice structures.
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2.3.1. Lattice structure desigrs, types, and design methods

Since the properties of the lattice structure material mainly rely upon the nature and formation of

the unit cell. Various methodologies are developed and utilised. Advancements in CAE enable

researchers and engineers to design complex lattice stru€@her®t al.[16] discussed the three

stagedor the development

déttice structuravhich aregiven below:

a. The intuitive design of unit calusing CAD.

b. Implicit or explicit equationdased modelling.

c. Optimizationtechniques like Topology Optimization (TO) and Generative Design (GD).

Design stretegies for lattice structures

CAD

Mathematical

Structural optimization

Implicit equation based

Implicit surface based

Explicit function based

TPMS

parametric design

Figure 8 Different design strategies for lattice structures.

Upon literature reviewit is observed thatignificant work has been done in the design and
development of lattice structures. Tetoal.[13] represented a primitiveased method to design
3D lattice structures. Wargf al. [17] designed lattice structures through parametric modelling

Figure 9. Helouet al.[18] reviewed the design, analysis, and manufacturing of lattice structures.
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(@
Figure 9 Primitive-based method design for 3D lattice structyte®] © 2016 IEEE

2.3.1.1 Strut-based lattice structures
Strutbased lattice structures are commonly used cellular materials that consist of cylindrical
members called struts. These struts are spatially arranged and distributed across a unit cell in a
symmetrical manndrigure10. The most common types of stibdised lattice structures are Body
Centre Cubic (BCC), Face Centre Cubic (FCC) and Cetgtire 11. These structures are
discussed thoroughly iGhapter (4).

Figure 10 Srut-based unit cells (a) BCC (b) BCCz (c) FCC (d) FBCC (EE&z (f) SFCCz
(9) SFBCC (h) SFBCCz.
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Figure 11 (a) BCC, (b) FCCand (c)representctet unit cellswhere (df) represents

respective lattice structures.

2.3.1.2TPMS lattice structures
Triply periodic minimal surface (TPMS) structures are the type of lattice structures which are
composed of surface geometrieslike strutbased lattice strictureahich are composed of beam
elements. Hao and Huss€gii9] used an implicit set of equations to define-s$swfaces and
generate unit cells of Gyroid and Diamond. Implicit equations are simple and provide better
flexibility to alter the geometry of the unit cell by tuning the design parameters. These surfaces
corsist of points in 3D and the location of these poinis defined through mathematical
expression given below:

~ ,~

Qaovhgy T Equationl

for Qafudr  mall the points lie on the surface, f@ciud  mtall the points exist inside
the surfaceand for Qafuftr 1t the points present outside the surface. For example, a
representation ofhe implicit sphere is expressed &afudt k @ & & p. The

general formula for generating periodic surface is given below:

Equation2

35



Chapter (2) Literature review

Maskeryet al.[20] studied the mechanical properties of different types of TPMS lattice structures
that are fabricated by polymer AM. They analysed these three types of lattice structures and
concluded that the primitive showed better stiffness as compared to the otlggrons and

diamonds-igure12.

Figure 12 Different types of TPMS lattice structur@3 Gyroid, (b) Diamond and (c) Primitive
[20].

Al-Ketanet al.[21] studied the TPMS lattice structures, which are multifunctional mechanical
metamaterials. They studied various TPMS lattice structures; Schwartz P, Schoen G, Schwarz D,
Schoen IWP and Fisch&och S and Schoen FRBs shown irrigure13.

(d)

Figure 13 TPMS lattice materials(a) SchwarzPrimitive (b) SchoeiGyroid (c) Schwarz
Diamond(d) SchoerA-WP [22] and (e)FischerKoch Sand(f) SchoeAFRD [23].

2.3.2. Lattice structure desigmoptimization
Structural optimization at the urgell level is a technique to discover new geometrical shapes
that areapplicable incustom applications showirgptimal desiredperformanceThe literature
reviewidentifiesthreecommontypes ofunit-cell structuraloptimizationwhich arestated below
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1. Sizeoptimization
2. Shapeoptimization

3. TopologyOptimization(TO).

1. Size Optimizatiorin lattice structures involves adjusting the dimensions of individual lattice

members or the overall size of the structure to achieve desired performance, weight, or strength
characteristics. This process aims to find the optimal size that balancesratrierjuirements

and resource efficiency.

2. Shape Optimizatiofocuses on refining the geometry of lattice members within a structure to

enhance mechanical properties or other performance metrics. By modifying the shapes of lattice
elements, such as struts and nodes, researchers and engineers can enhance lgdahdistrib

reduce stress concentrations, and optimize material usage.

3. Topology Optimization (TO¥eeks to determine the optimal distribution of material within a

lattice structure. It involves iteratively removing or adding material in specific regions to achieve
optimal stiffness, weight, or other performance criteria. TO identifies the most affecti
arrangement of lattice members, often resulting in intricate and organic shapes that maximize
structural efficiencyTO is different fromshape optimizatioand sizing optimization in a way

that the design can form any shape within the design domain instead of dealing with predefined
configurationg24]. Xiaoet al.[25] applied topologyptimizationat the cellular level and studied

the stiffness of the lattice structures.

Load Area 0=250 MPa Step0 Step 5 Step 10 Step 15

] Design Area —
Face Centre Cube | e
(FCC) g .| -
Vertex Cube | & R
(vey . I 1 o
| ‘: :‘4 ”‘.‘ ;:\ 4 |
. x " ’

Figure 14 TO based on boundary conditioj25].

Edge Centre Cube
(ECC)
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Upon general observation of these three design optimization methods, it is evident that the prime
effect of these optimizations is on the lattice denéitylume fraction or porosity Hance,
identifying the optimatlensityfor tailored objectives is one of the kegrameterto consider that

also affects the mechanicaharacteristicdfor instance strength to weight ratio and energy
absorption. Although these methods address the optimization atelligvel, there are several

other optimization methodshich address the optimization across the whole lattice design
domain. The common approaches for lattice design optimization based on density distribution are

stated below:

2.3.2.1. Density distribution of thdattice structures:
Researchers showed that tiét cell arrangement across the design domain of lattice structures
can be categorized into three main ty@ssseern Figurel5

Spatial distribution of the
unit cells

Homegenious Graded Voronoi

Figure 15 The nain categories of the undell distribution across the lattice structure design

domain.

In uniform or homogeneous distribution, the same density of the unit cell is distributed across the

entire lattice structure hence resultinga homogeneous density distribution across the lattice.

Figure 16 Thehomogeneous distribution of density across the lattice.

Nonruniform or gradient lattice structures hareuneven distribution of density across the lattice.

Gradient structures are usually found in nature, for example, bones, banana tesydqdgant
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stem. The mechanical properties of these gradient lattice structures depend upon the function
which distribute the density across the latti¢g6]. Sienkiewiczet al. [27] investigated the

mechanical response of graded lattice structuirgsel?.

) (b) (©)

Figure 17 Gradient lattice structures (a) discrete, (b) increasiagd (c) decreasinf7]

Unlike theisotropic behaviour of the material, Lattice structures can also design to be anisotropic.
Xu et al. [28] proposeda design strategy to control the anisotropic behaviour of the lattice
structures. They applied the numerical homogenisation method propoSéeleyet al.[29] to

obtain the stiffness matrix of the material. They observed that the isotropic factor was not
accurately equal to unity which means that the lattice structeresto show anisotropic
properties. These anisotropic propertiesdue to the characteristics of a unit cell geomdiks

the axial direction and orientation of the struts distributed in the unit cell. They concluded that
adjusting the strut diameter and angls &significant impact on the anisotropic behaviour under
mechanical loads. Zhamg al.[30] developed a Homogenization, Optimization and Construction
(HOC) method to design namiform lattice structures representing variable densities across the
lattice. They showed that the constitutive law of homogenised material is a fun€tiba

geometrical parameters of the lattice structiiigsire 18.

Figure 18 HOC method for nowiniform infill density of lattice structurd80].
Chenget al. [31] applied the TO technique on the bracket through an algorithm to enhance

stiffness while reducing the mass of the bracket. He concluded that the Homogenization

Optimization Reconstruction Validation (HORV) algorithm is 2.3 times more efficient than the
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