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Abstract:  

This PhD thesis focuses on the design, optimization, and additive manufacturing (AM) of lattice 

structures and mechanical metamaterials. These materials, characterized by their cellular nature, 

possess unique properties primarily determined by the design of their individual cells rather than 

the properties of the bulk material from which they are constructed. Mechanical metamaterials 

exhibit properties which are uncommon in nature, indicating a spectrum of potential applications. 

This study proposes various modelling strategies, based on explicit, implicit, and parametric 

functions, for the design of lattice structures and mechanical metamaterials. The responses of 

these structures are investigated through numerical simulations and experimental testing. For 

tailored responses, these structures are tuned using an optimization strategy using a genetic 

algorithm (GA). The study develops, simulates, and tests a range of different designs exhibiting 

unique properties, such as programmable permeability, auxetic response, and dual-stiffness 

characteristics. Various AM processes, including Digital Light Processing (DLP), Fused 

Deposition Modelling (FDM), and Selective Laser Sintering (SLS), are employed for the 

fabrication of the designed lattice structures and metamaterials.  

 

The thesis begins with a comprehensive literature review on lattice structure and mechanical 

metamaterial design for AM. Subsequently, the mechanical properties of different lattice 

structures fabricated through SLS and DLP are investigated. The numerical and experimental 

results from compression testing are compared and discussed, revealing the effect of these AM 

processes on the mechanical response and the discrepancy between numerical and experimental 

outcomes.  

 

Evolving the understanding of the mechanical behaviour of the lattice structures, a multi-objective 

GA is utilized to optimize the shape of a body-centred cubic (BCC) lattice structure for maximum 

stiffness and minimum von Mises stress. An implicit model of BCC is integrated with Finite 

Element Analysis (FEA) and GA to perform shape optimization for the best response. The 

numerical results obtained from this method are compared with those of a classical model of a 

BCC structure to assess the efficiency of the presented optimization approach. These findings are 

supported by experimental testing of selected designs fabricated through DLP. 

 

The methodology is further applied to the design of a 2D auxetic metamaterial featuring variable 

permeability. A parametric equation defines the unit cell of the auxetic structure, which is then 

utilized as a programmable filtering medium capable of filtering particles of specific sizes. GA is 

employed to optimize the geometry of the auxetic structure for effective particle filtration under 
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uniaxial applied strain. A prototype is fabricated through FDM and tested to evaluate the 

effectiveness of the developed filtering medium. 

 

Furthermore, the design methodology is expanded to the development of 3D metamaterials 

offering a spectrum of mechanical properties. An explicit equation-based model consisting of 

three design variables is employed to construct a unit cell. The effect of varying each design 

variable on the resulting geometry and its corresponding mechanical response is investigated. A 

variety of design configurations possessing unique properties are presented and discussed, 

including 3D auxetic structures and dual-stiffness materials, which are designed, simulated, and 

experimentally tested. 

 

This work has achieved significant milestones, including the creation of a versatile programmable 

lattice metamaterial designed for various functions and applications. An important objective was 

met by integrating a multi-objective optimization approach, seamlessly incorporating a 

parametric design algorithm into the optimization process. To demonstrate the practicality of 

these lattice metamaterial designs, a variety of applications were explored by fabrication of the 

developed metamaterials through AM processes. The study concludes by showcasing the 

proposed programmable metamaterial designs, categorizing lattice metamaterials systematically, 

evaluating current limitations in metamaterial design and fabrication technologies, and offering 

recommendations for future research directions. These recommendations focus on expanding and 

implementing innovative techniques and tools for metamaterial development. 

 

Keywords: additive manufacturing, auxetics, dual stiffness, genetic algorithm, implicit modelling, 

parametric design, lattice structures, metamaterials, morphic metamaterial, optimization, 

programmable materials. 
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1. Chapter (1) Introduction 

This chapter provides an overview of the research aims and objectives, some fundamental 

questions which will  be answered in this research and the structure of this thesis. This chapter 

sheds some light on the background and motivation behind this research and shows the 

multidisciplinary knowledge that is gained and utilized to accomplish the objectives of this 

research work.  

 

1.1. Background and motivation 

In recent years, there has been significant progress and innovation in metamaterials for the 

research and engineering community. However, the design and optimization processes for 

metamaterials are a complex subject. The existing knowledge in this field is fragmented, lacking 

a definitive methodology, criteria, classification for design, design techniques, standardization, 

and optimization methods. Typically, the design of metamaterials is obtained through intuitive 

CAD modelling or optimization techniques such as topology optimizations and generative design 

to name a few. 

 

Currently, several researchers have begun exploring the use of artificial intelligence to develop 

and optimize metamaterial designs for tailored applications. However, a deeper relationship 

between the design variables and their corresponding mechanical performance has not been fully 

uncovered. Additionally, numerous designs have been developed for specific objectives like 

enhanced toughness, controlled flexibility, heat or energy dissipation (Table 1) in order to address 

the unique applications, making it confusing to select and apply the most suitable design for 

unique or custom applications. 

 

 

Figure 1 An ideal performance evaluation chart for lattice metamaterial design that is efficient 

and outperform in various dimensions of mechanical properties. 
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Given these motivations, this research aims to address these challenges by proposing highly 

programable lattice structures and metamaterial designs that incorporate powerful optimization 

tools like genetic algorithm. By leveraging advanced optimization algorithms, the research aims 

to uncover the empirical relationship between design parameters and mechanical performance, 

enabling more efficient and effective designs for lattice structures and metamaterials. 

 

Furthermore, this research seeks to establish a comprehensive framework that encompasses a 

wide range of material applications. By developing a versatile and adaptable metamaterial design 

approach, it aims to meet the unique requirements and modern demands of various engineering 

and research applications. The proposed embedded design and optimization technique has the 

potential to expand the knowledge of lattice metamaterial design, offering a promising avenue for 

further advancements in the subject of lattice structures and metamaterials. 

 

 

Figure 2 Overview of mechanical metamaterials (a) design and structures, (b) physical and 

mechanical properties, and (c) various applications [1] . 

 

While the subject of metamaterials has seen an exponential advancement, there is a literature gap. 

A literature gap that points towards an absence of a versatile lattice metamaterial design that holds 

the recognized value across multiple domains of the science and engineering. Throughout existing 

literature, researchers and engineers have conceived a multitude of designs, each tailored to 

address distinct and specialized applications or functionalities. The task of identifying an optimal 

lattice metamaterial design tailored to a specific purpose is exhaustive. The current literature 

either lacks the explicit development of a singular, multipurpose design, or the underlying concept 

has not yet attained a good level of maturity. 
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In essence, the objective of this research is to bridge the existing gap between lattice metamaterial 

designs and their potential in modern applications. This is achieved through the proposal of an 

exceptionally versatile and programmable design methodology, seamlessly integrated with 

optimization algorithms such as Genetic Algorithms (GA). The advent of a programmable and 

versatile lattice metamaterial design represents a milestone within the subject of modern material 

design. It addresses the challenges posed by modern functional materials and their applications 

across a wide spectrum of industries that uses materials.  

 

Adopting a broader and forward-looking perspective, this study seeks to contribute to the 

evolution of a more systematic and comprehensive approach towards metamaterial design. By 

furnishing a framework for standardization, it accomplishes to tackle modern challenges while 

adapting the varied demands for lattice metamaterial applications across research and engineering 

domains. 

 

1.2. Aims and objectives. 

The principle aim of this work is to develop a methodology for the design and optimization of 

programable lattice structures and metamaterials. These lattice materials are multifunctional and 

able to transform into different geometrical configurations to address a wide variety of tailored 

applications and response objectives. 

 

The following are some of the key objectives of this research work: 

 

¶ Study and understand widely used designs for lattice structures and metamaterials.  

¶ Understanding the different design approaches for lattice metamaterials.  

¶ Develop different methodologies for lattice structure and metamaterial designs. 

¶ Development of several programable lattice structures and metamaterials. 

¶ Apply and embed a suitable optimization technique(s) to optimize the lattice design for 

enhanced mechanical response(s).  

¶ Develop algorithms and software applications using Matlab 2021 R1® to design, 

analyse and optimize lattice metamaterial for specialized applications.  

¶ Deploy the proposed lattice metamaterial design and optimization method in various 

applications to demonstrate the significance of this work.  

¶ Develop several practical examples to demonstrate the novelty of this work and its 

value in industrial applications.  
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1.3. Significance and novelty of this research 

This thesis presents a few lattice structure and metamaterial design techniques and optimization 

methods. The aim is to achieve designs which are transformable into different shapes by 

manipulating their multiple design variables, which can be referred to as ómorphic 

metamaterialsô. The incorporation of multiple design variables allows for achieving a unique 

blend of mechanical responses and functionalities. Such lattice materials have a promising future 

in industrial applications. 

 

Furthermore, this thesis introduces a lattice structure design classification method that categorizes 

lattice designs based on the number and types of design variables and other related factors, like 

the impact of additive manufacturing technologies.  

 

In addition to the design methodology aspect, the optimization part of this thesis is noteworthy. 

A multi-objective optimization technique is developed. This embedded design and optimization 

methodology enables the simultaneous optimization of multiple design parameters providing 

greater versatility and flexibility. 

 

Figure 3 is an abstract representation of the different dimensions of the research disciplines which 

are studied and utilized to achieve the objectives of this research. 

 

  

Figure 3 Different disciplines of science addressed in this research work. 
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1.3.1. Research problems and gaps in current knowledge 

¶ Currently, in the literature, there is a lack of such a unique morphic design that exists which 

is transformable to different shape configurations and can be optimized for multiple 

objectives for tailored applications. 

¶ There is no mutually agreed or standardised methodology to construct different variants of 

the lattice metamaterial tailored for specialized objectives and applications.  

¶ The current optimization techniques in the available literature are complex or constrained 

to very specific designs leading towards focused or limited applications.  

¶ The relationships between the design parameters, design variants and the implicit relation 

between the design control parameters and the mechanical responses are not fully explored.  

 

1.3.2. Research questions 

¶ Why lattice structures are valuable for modern applications? 

¶ Why is there a demand for programmable lattice structures? 

¶ Why a standardize strategy is required to design, categorise, and choose the right lattice 

material for the right application? 

¶ Why is there a requirement to categorize lattice designs with respect to the number of 

design variables and other factors?  

¶ Why address Poissonôs ratio as one of the principal properties of lattice structures and 

metamaterials? 

¶ Why it is important to optimize the design of mechanical lattice structures and 

metamaterials using techniques of artificial intelligence? 

 

To further demonstrate the significance of these fundamental research questions following are 

some of the preliminary comments that shed some light on this subject.  

 

¶ Lattice structures and metamaterials are becoming efficient and desirable candidates for 

modern applications due to their exceptional mechanical properties and unique 

functionalities. They offer unmatched opportunities for tailoring material behaviour, such as 

negative refraction, acoustic cloaking, and energy absorption. Their ability to exhibit 

properties not found in natural materials makes them highly desirable for applications in fields 

like aerospace, automotive, and structural engineering. 
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¶ There is a convincing need for programmable lattice metamaterials because they allow for 

adaptive and reconfigurable structures. By manipulating their design variables, these 

metamaterials can be transformed to suit different conditions or requirements. Programmable 

lattice metamaterials offer enormous potential for developing smart materials and structures 

that can adapt to changing environments, enhancing their performance and functionality. 

 

¶ The need for a mathematical model to design or choose the right metamaterial arises due to 

the complex and intricate nature of these materials. A mathematical model provides a 

systematic and reliable approach to predicting and understanding the behaviour of 

metamaterials, facilitating the selection of the most appropriate design for a specific 

application. It facilitates engineers and researchers to optimize performance, durability, and 

other desired properties based on mathematical principles and simulations. 

 

¶ Categorizing metamaterial designs with respect to the number of design variables is essential 

for better understanding and organizing the vast design space. By classifying designs based 

on the number of variables involved, it becomes straightforward to compare and evaluate 

different designs, identify common patterns, and establish design principles. This 

categorization aids in modernizing the design process and enables more efficient exploration 

of the design space, leading to improved design outcomes. 

 

¶ Poisson's ratio is considered one of the principal properties of mechanical metamaterials due 

to its significant influence on material behaviour and structural response. It measures the 

material's transverse deformation in response to axial deformation and is crucial for 

understanding the material's compressibility, deformability, and overall mechanical 

performance. Addressing this property allows for the precise control and manipulation of 

mechanical properties in metamaterials, enabling the design of structures with desired 

mechanical performance. 

 

¶ Artificial intelligence (AI) is increasingly being recognized as a valuable tool for optimizing 

lattice structures and metamaterial designs. The complexity and multi-dimensional nature of 

the design space make traditional optimization techniques obsolete. AI, with its ability to 

analyse large volumes of data and identify complex patterns, offers new avenues for 

optimizing lattice metamaterial designs effectively. By employing AI algorithms, engineers 

and researcher are able to explore the design space more efficiently, recognise optimal 

designs, and attain improved performance and functionality of metamaterials. AI 
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optimization techniques provide valuable insights and accelerate the design optimization 

process, reducing costs and time associated with conventional iterations methods for design 

improvements. 

 

1.4. Thesis structure and map 

This section provides the map of this thesis which is given below. This map shows the relationship 

between different disciplines that are applied to achieve the objectives of this research.  

 

Chapter (1): This chapter discusses the aims and objectives of this research thesis. The novelty 

and general idea, the road map, key fundamental research questions and the significance of this 

research.  

 

Chapter (2): This chapter provides a comprehensive literature review regarding cellular 

structures, lattice structures, metamaterials, and auxetic metamaterials. Addressing the design 

types, design methods, optimization methods, physical and mechanical properties, fabrication 

techniques and the current role of lattice structures in different applications.   

 

Chapter (3): This chapter represents different methodologies to design and optimize lattice 

metamaterials. It also presents a framework for classification methods for a new generation of 

lattice metamaterials.   

 

Chapter (4): This chapter gives an insight into the strut-based lattice structures like BCC, FCC 

and Octet and evaluates the impact of two different AM processes on the mechanical properties 

of the lattice structures.   

 

Chapter (5): This chapter covers a unique design strategy based on multiparameter implicit 

modelling of BCC structure and utilising multi-objective genetic algorithm optimization method 

to enhance the mechanical performance of the BCC lattice structures.  

 

Chapter (6): This chapter provides a novel auxetic metamaterial design that is applied in particle 

filtering media. This auxetic filter is developed and optimized based on the filtering media 

characteristics.   
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Chapter (7): This chapter represents a novel design of metamaterial which is highly morphic and 

transforms into various shapes configurations to comply with multiple objectives. This 

programable design has the potential to be applied in many applications due to its versatile nature. 

 

Chapter (8): This chapter presents the key achievements of this research work and provides high 

level summary. In addition to that, the potential applications and examples are provided based on 

the proposed design and optimization techniques. At the end of this chapter, a comprehensive 

conclusion, discussion that addresses the work limitations and future research directions are 

portrayed.  
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2. Chapter (2) L iterature review  

In this chapter, a detailed literature review has been conducted, which begins with the introduction 

of cellular structures and gradually expands and explores the subject of metamaterials, including 

their design, types, optimization techniques, properties, and applications. This literature also 

sheds light on various AM technologies and their respective materials for lattice structures and 

metamaterials.  

 

2.1. Introduction  

This literature develops an understanding of a wide spectrum of cellular structures and their types, 

designs, optimization, properties, AM process and applications. In this chapter, a wide variety of 

literature is reviewed to provide useful knowledge that highlights the current design 

methodologies for a broad spectrum of applications and functionalities. This literature begins with 

an understanding of cellular structures, gradually expands towards lattice structures, and 

consequently focuses on various mechanical metamaterial designs, classification, optimization 

techniques, manufacturing processes, and applications in various disciplines of science and 

engineering. The subject of metamaterials is focused on this literature because modern industrial 

demands require sophisticated materials and design strategies to fulfil the ever-growing demand 

for specialized applications. However, conventional materials and designs are not sufficient to 

address these objectives. For instance, Negative Refractive Index (NRI) [2], and negative 

Poissonôs ratio (NPR) [3]. These properties are positive for the most engineered and natural 

materials with some exceptions [4] but in many tailored applications, uncommon properties are 

required. Hence, exploring the literature regarding metamaterials plays an important role to 

expand and innovate in this subject. As this literature review moves forward, it is worth 

mentioning the most recent advancements in lattice metamaterials that can be categorized into 

four main dimensions: 

 

1. Advancement in design and optimization strategies. 

2. Recent advancement and discoveries in lattice metamaterial properties. 

3. Advancement in fabrication techniques. 

4. Discovery and improvement of the new applications. 

 

Especially in the past few years, a significant interest of the researchers and engineers is seen for 

the lattice metamaterials due to their future potential in various domains of science and 

engineering. Al-Rifaie et al. [5] represented a great review of lattice metamaterials focusing on 
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lattice materialsô properties like vibration isolation, energy absorption to showcase the potential 

of lattice metamaterial designs. On AM side of the metamaterials, Askari et al.  [6] exhibited state 

of the art manufacturing technologies of the lattice metamaterials. Similarly, Zhou et al.  [7] 

presented an exceptional literature addressing the advancement in metamaterialsô 3D/4D printing 

technologies and set and excellent example for use of metamaterials in modern applications. 

Wang et al.  [8] demonstrated an excellent example of the metamaterialôs evolution in design, 

properties, fabrication, and applications. 

 

The literature primarily addresses four dimensions of the lattice materials, which are outlined 

below: 

 

¶ Understand design methods, classification, and optimization techniques. 

¶ Explore the wide spectrum of physical and mechanical properties.  

¶ Discover fabrication processes through AM and other technologies. 

¶ Identify versatile nature of applications in research and engineering fields.  

 

2.2. Insight into cellular structures 

One of the earliest types of research regarding porous materials and the introduction of the concept 

of ñcellular structuresò are represented by Gibson, Ashby, Evans and Hutchinson [9], [10] & 

[11]. Cellular structures are made from small repeating porous structures which can be observed 

in nature, for instance, tree stems, sponges, coral reefs, cork etc. These cellular structures are 

categorised as stochastic structures studied by Ashby et al. [12]. However, man-made cellular 

structures are gaining popularity because of their versatility by addressing several dimensions 

presented in Figure 4.  

 

 

Figure 4 Addressable dimensions of the cellular structures. 

 

The properties of these cellular structures mainly depend upon the porosity and nature of their 

geometry. Wenjin et al. [13] categorised the cellular structures and the lattice structures as shown 

Cellular structures

Types & Designs Properties Fabrication Applications
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in Figure 5. They also suggested the best suitable designs and design methodologies for lattice 

structures while considering suitable AM processes. Ashby et al. [14] worked on the metallic 

cellular foams that showed the fabrication processes by the inclusion of air or other gaseous 

substances into the solid material to gain desirable stiffness while reducing the weight of the 

material. Davies et al. [15] calculated the porosity of metallic foams, which ranges from 40% to 

98% porosity. These foam structures are common and can be fabricated in various shapes and 

sizes, for example, honeycombs, triangular/square/hexagonal prisms, and tetrahedrons.  

 

 

Figure 5 Classification of cellular solids [13]  © 2016 IEEE. 

 

2.3. Insight into lattice structures 

Lattice structures are made of small spatially distributed and repeating interconnected structures 

called unit cells. A unit cell represents the overall properties of the lattice structure material. Some 

of the commonly used lattice structure designs are discussed by Pan et al. [16]. They studied the 

uniform and non-uniform lattice structures, design optimization methods, fabrication processes 

and applications. They showed that commonly there are various ways in which lattice structures 

are designed. For instance, design through CAD modelling, through mathematical modelling, 

through optimization processes like topology optimization, Voronoi tessellation, Size Matching 

and Scaling (SMS), Size Gradient Method (SGM) Homogenization Optimization, and 

Construction (HOC). A hierarchy of cellular and lattice structures is presented in Figure 6. This 

hierarchy shows two main categories of cellular structures which are Stochastic and non-

stochastic. Stochastic structures are like foam structures made from random shape and distribution 

of open or closed cells. On the other side, non-stochastic materials are constructed from the well-

defined cell geometry and the orderly cell distribution across the lattice in the spatial domain.  
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Figure 6 Hierarchy diagram for the various types of cellular structures. 

 

Unlike stochastic structures, lattice structures are convenient to design, simulate, optimize, 

fabricate, and utilize in tailored applications because of their discrete geometric characteristics. 

Therefore, many of the researchers have developed various designs of lattice structures to address 

different dimensions of this subject presented in Figure 7.  

 

 

Figure 7 Four subjects that are addressed in the literature review to study lattice structures. 
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2.3.1.  Lattice structure designs, types, and design methods 

Since the properties of the lattice structure material mainly rely upon the nature and formation of 

the unit cell. Various methodologies are developed and utilised. Advancements in CAE enable 

researchers and engineers to design complex lattice structures. Chen et al. [16] discussed the three 

stages for the development of lattice structure which are given below: 

 

a. The intuitive design of unit cells using CAD. 

b. Implicit or explicit equations-based modelling. 

c. Optimization techniques like Topology Optimization (TO) and Generative Design (GD).  

 

 

Figure 8 Different design strategies for lattice structures. 

 

Upon literature review, it is observed that significant work has been done in the design and 

development of lattice structures. Tao et al. [13] represented a primitive-based method to design 

3D lattice structures. Wang et al. [17] designed lattice structures through parametric modelling 

Figure 9. Helou et al. [18] reviewed the design, analysis, and manufacturing of lattice structures. 

 

Design stretegies for lattice structures

CAD Mathematical 

Implicit equation based Implicit surface based

TPMS

Explicit function based
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Structural optimization
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Figure 9 Primitive-based method design for 3D lattice structures [13]  © 2016 IEEE. 

 

2.3.1.1. Strut-based lattice structures 

Strut-based lattice structures are commonly used cellular materials that consist of cylindrical 

members called struts. These struts are spatially arranged and distributed across a unit cell in a 

symmetrical manner Figure 10. The most common types of strut-based lattice structures are Body 

Centre Cubic (BCC), Face Centre Cubic (FCC) and Octet Figure 11. These structures are 

discussed thoroughly in Chapter (4). 

 

 

Figure 10 Strut-based unit cells (a) BCC (b) BCCz (c) FCC (d) FBCC (e) S-FCCz (f) S-FCCz 

(g) S-FBCC (h) S-FBCCz. 
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Figure 11 (a) BCC, (b) FCC, and (c) represents Octet unit cells, where (d-f) represents 

respective lattice structures. 

 

2.3.1.2. TPMS lattice structures 

Triply periodic minimal surface (TPMS) structures are the type of lattice structures which are 

composed of surface geometries, unlike strut-based lattice strictures, which are composed of beam 

elements. Hao and Hussein [19] used an implicit set of equations to define iso-surfaces and 

generate unit cells of Gyroid and Diamond. Implicit equations are simple and provide better 

flexibility to alter the geometry of the unit cell by tuning the design parameters. These surfaces 

consist of points in 3D, and the location of these points is defined through mathematical 

expression given below: 

 

Ὢ ὼȟώȟᾀ  π Equation 1 

 

for Ὢὼȟώȟᾀ  π all the points lie on the surface, for Ὢὼȟώȟᾀ  π all the points exist inside 

the surface, and for Ὢὼȟώȟᾀ  π the points present outside the surface. For example, a 

representation of the implicit sphere is expressed as Ὢὼȟώȟᾀḳ ὼ ώ  ᾀ ρ. The 

general formula for generating periodic surface is given below: 

 

ÃÏÓὼ Ὧ π 
Equation 2 
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Maskery et al. [20] studied the mechanical properties of different types of TPMS lattice structures 

that are fabricated by polymer AM. They analysed these three types of lattice structures and 

concluded that the primitive showed better stiffness as compared to the other two gyroids and 

diamonds Figure 12.  

 

 

Figure 12 Different types of TPMS lattice structures (a) Gyroid, (b) Diamond and (c) Primitive 

[20] . 

 

Al -Ketan et al. [21] studied the TPMS lattice structures, which are multifunctional mechanical 

metamaterials. They studied various TPMS lattice structures; Schwartz P, Schoen G, Schwarz D, 

Schoen IWP and Fischer-Koch S and Schoen FRD, as shown in Figure 13. 

 

 

Figure 13 TPMS lattice materials (a) Schwarz-Primitive (b) Schoen-Gyroid (c) Schwarz-

Diamond (d) Schoen-I-WP  [22]  and (e) Fischer-Koch S and (f) Schoen-FRD  [23] . 

 

2.3.2.  Lattice structure design optimization 

Structural optimization at the unit-cell level is a technique to discover new geometrical shapes 

that are applicable in custom applications showing optimal desired performance. The literature 

review identifies three common types of unit-cell structural optimization which are stated below: 
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1. Size optimization. 

2. Shape optimization.  

3. Topology Optimization (TO).  

 

1. Size Optimization in lattice structures involves adjusting the dimensions of individual lattice 

members or the overall size of the structure to achieve desired performance, weight, or strength 

characteristics. This process aims to find the optimal size that balances structural requirements 

and resource efficiency. 

 

2. Shape Optimization focuses on refining the geometry of lattice members within a structure to 

enhance mechanical properties or other performance metrics. By modifying the shapes of lattice 

elements, such as struts and nodes, researchers and engineers can enhance load distribution, 

reduce stress concentrations, and optimize material usage. 

 

3. Topology Optimization (TO) seeks to determine the optimal distribution of material within a 

lattice structure. It involves iteratively removing or adding material in specific regions to achieve 

optimal stiffness, weight, or other performance criteria. TO identifies the most effective 

arrangement of lattice members, often resulting in intricate and organic shapes that maximize 

structural efficiency. TO is different from shape optimization and sizing optimization in a way 

that the design can form any shape within the design domain instead of dealing with predefined 

configurations [24]. Xiao et al. [25] applied topology optimization at the cellular level and studied 

the stiffness of the lattice structures.  

 

 

Figure 14 TO based on boundary conditions [25] . 

 

https://en.wikipedia.org/wiki/Shape_optimization
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Upon general observation of these three design optimization methods, it is evident that the prime 

effect of these optimizations is on the lattice density (volume fraction) or porosity. Hance, 

identifying the optimal density for tailored objectives is one of the key parameters to consider that 

also affects the mechanical characteristics for instance strength to weight ratio and energy 

absorption. Although these methods address the optimization at unit-cell level, there are several 

other optimization methods which address the optimization across the whole lattice design 

domain. The common approaches for lattice design optimization based on density distribution are 

stated below:  

 

2.3.2.1. Density distribution of the lattice structures: 

Researchers showed that the unit cell arrangement across the design domain of lattice structures 

can be categorized into three main types, as seen in Figure 15 

 

 

Figure 15 The main categories of the unit-cell distribution across the lattice structure design 

domain. 

 

In uniform or homogeneous distribution, the same density of the unit cell is distributed across the 

entire lattice structure hence resulting in a homogeneous density distribution across the lattice.  

 

 

Figure 16 The homogeneous distribution of density across the lattice. 

 

Non-uniform or gradient lattice structures have an uneven distribution of density across the lattice. 

Gradient structures are usually found in nature, for example, bones, banana trunk, trees, and plant 

Spatial distribution of the 
unit cells

Homegenious Graded Voronoi
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stem. The mechanical properties of these gradient lattice structures depend upon the function 

which distributes the density across the lattice [26]. Sienkiewicz et al. [27] investigated the 

mechanical response of graded lattice structures Figure 17. 

 

 

(a)     (b)       (c) 

Figure 17 Gradient lattice structures (a) discrete, (b) increasing, and (c) decreasing [27]  

 

Unlike the isotropic behaviour of the material, Lattice structures can also design to be anisotropic. 

Xu et al. [28] proposed a design strategy to control the anisotropic behaviour of the lattice 

structures. They applied the numerical homogenisation method proposed by Steven et al. [29] to 

obtain the stiffness matrix of the material. They observed that the isotropic factor was not 

accurately equal to unity which means that the lattice structures tend to show anisotropic 

properties. These anisotropic properties are due to the characteristics of a unit cell geometry, like 

the axial direction and orientation of the struts distributed in the unit cell. They concluded that 

adjusting the strut diameter and angle has a significant impact on the anisotropic behaviour under 

mechanical loads. Zhang et al. [30] developed a Homogenization, Optimization and Construction 

(HOC) method to design non-uniform lattice structures representing variable densities across the 

lattice. They showed that the constitutive law of homogenised material is a function of the 

geometrical parameters of the lattice structures Figure 18. 

 

 

Figure 18 HOC method for non-uniform infill density of lattice structures [30] . 

 

Cheng et al. [31] applied the TO technique on the bracket through an algorithm to enhance 

stiffness while reducing the mass of the bracket. He concluded that the Homogenization 

Optimization Reconstruction Validation (HORV) algorithm is 2.3 times more efficient than the 




























































































































































































































































































































































































