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Shouyong Jiang and Shengxiang Yang, Senior Member, IEEE

Abstract—While Pareto-based multi-objective optimization al-
gorithms continue to show effectiveness for a wide range of
practical problems that involve mostly two or three objectives,
their limited application for many-objective problems, due to
the increasing proportion of nondominated solutions and the
lack of sufficient selection pressure, has also been gradually
recognized. In this paper, we revive an early-developed and
computationally expensive strength Pareto based evolutionary
algorithm by introducing an efficient reference direction based
density estimator, a new fitness assignment scheme, and a new
environmental selection strategy, for handling both multi- and
many-objective problems. The performance of the proposed
algorithm is validated and compared with some state-of-the-art
algorithms on a number of test problems. Experimental studies
demonstrate that the proposed method shows very competi-
tive performance on both multi- and many-objective problems
considered in this study. Besides, our extensive investigations
and discussions reveal an interesting finding, that is, diversity-
first-and-convergence-second selection strategies may have great
potential to deal with many-objective optimization.

Index Terms—Multi-objective optimization, many-objective
optimization, strength Pareto evolutionary algorithm, reference
direction, computational complexity.

I. INTRODUCTION

M
ULTIOBJECTIVE evolutionary algorithms (MOEAs),
such as nondominated sorting genetic algorithm II

(NSGA-II) [10], strength Pareto based evolutionary algo-
rithm 2 (SPEA2) [53], and Pareto archived evolution strategy
(PESA) [28], have shown their tremendous potential to handle
multi-objective optimization problems (MOPs) with two or
three objectives [11]. However, in many real-world applica-
tions, optimization problems often involve four or more ob-
jectives [23]. Recent studies have suggested that conventional
MOEAs are subjected to the scalability challenge, i.e., the
performance of these MOEAs degrades dramatically with the
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increase of the number of objectives. This fact gives rise to
a new term, known as many-objective optimization problems
(MaOPs), to better refer to those MOPs that have four or more
objectives. Note that some communities, such as the multi-
criterion decision making (MCDM) [3], do not differentiate
between multiobjective and many-objective optimization.

Pareto-based MOEAs employ the (weak) Pareto-dominance
relation (denoted as “�”) [11], a kind of notion that defines a
partial order in the objective space, to discriminate individuals
in the population. For two individuals x and y, if x is not
worse on all objectives and better on at least one objective
than y, then the “�” relation induces a partial order as x � y,
which means that individual x dominates y. Despite its great
success for dealing with MOPs, the Pareto-dominance relation
becomes less discriminating for MaOPs as most solutions
become incomparable or nondominated, and for over ten
objectives, almost all the solutions are nondominated [23]. For
a geometrical interpretation, the reader is referred to [26], [39].
As a consequence, the Pareto-dominance relation becomes
of limited use for MaOPs, since it cannot induce sufficient
selection pressure toward a set of tradeoff solutions, known as
the Pareto-optimal set (POS) in the decision objective or the
Pareto-opimal front (POF) in the objective space.

There have been a number of attempts to improve the
Pareto-based MOEAs for MaOPs. The first and foremost
approach is to modify or develop the definition of the Pareto-
dominance relation. In an early attempt, a relaxed version of
Pareto-dominance, known as ǫ-dominance, was proposed by
Laumanns et al. [30] to combine both the convergence and
diversity of solutions in a compact form. This modification
makes it possible for Pareto-based MOEAs to strengthen
selection pressure among solutions and has shown to be very
promising for MaOPs [18], [27], [41]. Other studies along this
direction, such as cone ǫ-dominance [5], k-optimality [16],
preference order ranking [36], fuzzy-dominance [16], [19], θ-
dominance [47], and generalized Pareto-optimality [50], have
also been shown to provide competitive results.

Another feasible way is to replace the Pareto-dominance
relation with an indicator function intended to evaluate the
quality of solutions, which is called an indicator-based ap-
proach [22]. The hypervolume indicator [54] possesses some
nice properties and is often used as the indicator function.
Hypervolume-based MOEAs do not require any explicit di-
versity preservation strategy to maintain population diversity,
instead, they promote diversity by the hypervolume indicator
itself. The indicator-based evolutionary algorithm (IBEA) [51]
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is an early implementation among hypervolume-based MOEAs
and can provide good results for MaOPs [41]. However,
A potential drawback of hypervolume-based methods is the
high computational burden for computing the hypervolume
measure on high-dimensional problems, thus reducing of its
efficiency for MaOPs. A recent study [4] has reported a
new hypervolume-based algorithm, called HypE, which ful-
fils hypervolume calculations by a Monte Carlo simulation
technique. This technique aims to reduce the computational
complexity of HypE, thus rendering it competitive for handling
MaOPs.

Decomposition-based MOEAs, which convert an MOP to
a number of subproblems and simultaneously solve them in
a collaborative manner, are another promising method for
MaOPs. The MOEA based on decomposition (MOEA/D) [48]
is a representative of this class of metaheuristics. MOEA/D
employs three possible decomposition functions, i.e., the
weighted sum function, the Chebyshev function, and the
penalty-based boundary intersection function, to decompose a
high-dimensional problem into a set of scalarizing subprolems.
It maintains population diversity by a set of evenly-distributed
weight vectors. This way, MOEA/D is capable of solving
different types of optimization problems with varying degrees
of success [17], [24], [25], [33], [48]. Since its introduction,
MOEA/D has been regarded as a benchmark for new MOEAs
by winning the unconstrained MOEA competition in the
2009 IEEE Congress on Evolutionary Computation (IEEE
CEC 2009) [49]. Besides, the decomposition-based idea has
also been exploited in some recently-developed MOEAs, e.g.,
NSGA-III [13], MOEA based on dominance and decomposi-
tion (MOEA/DD) [31] and MOEA/D with a distance-based
updating strategy [46], to maintain population diversity or
control convergence for many-objective optimization.

Another method for MaOPs is to alleviate the loss of
selection pressure by enhancing diversity management [2],
[32], [42]. In [2], a diversity management operator was intro-
duced to manage the activation/deactivation of diversity pro-
motion on the crowding distance of NSGA-II [10]. Wagner et

al. [41] reported a significant improvement on the convergence
performance of NSGA-II after modifying the assignment of
crowding distance values for boundary solutions. Recently, Li
et al. [32] proposed a shift-based density estimation (SDE)
strategy to increase selection pressure for MaOPs. For fitness
assignment, SDE takes into account both the distribution and
convergence information of solutions, and nondominated solu-
tions with poor convergence are penalized. The empirical study
in [32] showed a clear improvement for MOEAs incorporating
this strategy.

On the other hand, there has been a large amount of contri-
bution to preference-based approaches and objective reduction.
The former attempts to interactively introduce preferences
and thus produce tradeoff surfaces in objective subspaces
of interest to decision makers. In [14], the interactive use
of preferences is implemented by first modelling a strictly
monotone value function based on the accepted preference
information, and then using the resulting value function to
redefine the Pareto-dominance relation, directing the search to
more preferred areas. In a recent work, Wang et al. [43] pro-

posed to coevolve a family of preferences simultaneously with
a population of candidate solutions, which leads to preference-
inspired coevolutionary algorithms (PICEAs). Following this
idea, they suggested a realization of PICEAs, called PICEA-g,
and demonstrated that this method provides highly competitive
performance for MaOPs. The latter (i.e., objective reduction)
focusses on the reduction of the number of objectives [6],
[8], [37], [38], which attempts to circumvent the problems of
MaOPs by means of identification and removal of redundant
objectives. As a result, the reduced lower-dimensional prob-
lems can be solved effectively using existing MOEAs.

Most existing MOEAs adopt a convergence-first-and-
diversity-second selection strategy [34] to balance convergence
and diversity. This strategy generally works well in multiob-
jecitve optimization, where the proportion of nondominated
solutions in the population is not very high. Despite that,
it may fail if the search environments of multi-objective
optimization are very complex, which has been observed in the
study [34]. In many-objective optimization, the convergence-
first-and-diversity-second strategy can be of limited use be-
cause the proportion of nondominated solutions is very high
and diversity preservation is very likely to be carried out
only on nondominated solutions. The population is at the risk
of losing diversity and preserved solutions may be far from
each other if nondominated solutions are not well distributed.
Correspondingly, reproduction operators struggle to generate
promising solutions for unexplored regions as distant parents
are not very effective to generate good offspring solutions in
many-objective optimization [13], [29]. In fact, some dom-
inated but promising solutions can contribute to population
diversity, and proper use of them can increase the selection
pressure in high-dimensional optimization. In this sense, di-
versity outweighs convergence and should be emphasized for
many-objective optimization. Bearing this in mind, in this
paper, we propose a new strength Pareto evolutionary algo-
rithm (SPEA) based on reference direction, denoted SPEA/R,
for both multi- and many-objective optimization. SPEA/R is
a substantial extension of early-developed prominent SPEA
methods [53], [54]. It inherits the advantage of fitness as-
signment of SPEA2 [53] in quantifying solutions’ diversity
and convergence in a compact form, but replaces the most
time-consuming density estimator by a reference direction
based one. Our proposed fitness assignment also takes into
account both local and global convergence. More importantly,
unlike most MOEAs, we adopts a diversity-first-convergence-
second selection strategy, which can soundly balance diversity
and convergence. SPEA/R is examined on difficult multi- and
many-objective test suites, showing very competitive and even
better performance compared with several popular algorithms.
Furthermore, we extensively investigate possible reasons for
the high performance of SPEA/R and reveal some interesting
findings.

The rest of this paper is organized as follows. Section II de-
scribes the framework of the proposed algorithm, together with
detailed descriptions of its components. Section III presents
experimental studies on multi-objective optimization, followed
by studies on many-objective optimization described in Sec-
tion IV. Extensive investigations and discussions regarding the
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Algorithm 1 Framework of SPEA/R

1: Input: N (population size)
2: Output: approximated Pareto-optimal front
3: Generate a diverse reference direction set W :

W := Reference_Generation();
4: Create an initial parent population P ;
5: while stopping criterion not met do

6: Apply genetic operators on P to generate offspring
population P ;

7: Q := P ∪ P ;
8: Normalize objectives of members in Q:

Q := Objective_Normalization(Q);
9: for each reference direction i ∈ W do

10: Identify members of Q close to i:
E(i) := Associate(Q,W, i);

11: Calculate fitness values of members in E(i):
Fitness_Assignment(E(i));

12: end for

13: P := Environment_Selection(Q,W );
14: end while

proposed algorithm are provided in Section V. Section VI
concludes this paper.

II. PROPOSED SPEA/R ALGORITHM

The basic framework of the proposed SPEA/R algorithm
is presented in Algorithm 1. SPEA/R starts with an initial
population and the construction of a predefined set of reference
directions, which splits the objective space into a number of
independent subregions, helping guide the search toward the
whole POF with a good guarantee of population diversity in
the objective space. For each generational cycle, on the basis
of the preserved parent population, SPEA/R applies genetic
operator to reproduce an offspring population, followed by a
union of the parent and offspring populations. Then, to make
it capable of handling problems with disparately scaled objec-
tives, SPEA/R introduces an objective normalization strategy
after the merging of the two populations. Afterwards, each
member in the combined population is associated with a
reference direction (or a subregion). This way, the combined
population members are distributed to different subregions. A
novel fitness assignment technique is applied on individuals
residing in each subregion. Thereafter, a diversity-first and
convergence-second selection strategy is adopted to construct
a new parent population for the next generation. In the
following subsections, the implementation of each component
of SPEA/R will be detailed step by step.

A. Generation of the Reference Direction Set

Any reference-direction-based MOEA cannot ignore the
importance of the setting of reference directions (or weight
vectors in [48]). Early MOEA/D algorithms employ a system-
atic approach, developed by Das and Dennis [9], to generate
H =

(

p+M−1
M−1

)

reference directions on a unit simplex for M
objectives, where p is the number of divisions considered along
each objective coordinate. The systematic approach works
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Fig. 1: Intersections of reference directions and a unit sim-
plex: (a) reference directions on the subsimplex Simp(i); (b)
reference directions (with 28 directions generated by 3 layers)
in three-dimensional space.

well for low-dimensional problems, especially for bi-objective
problems, where the number of reference directions can be
arbitrarily designated. For high-dimensional problems, how-
ever, this approach will generate a large amount of reference
directions if intermediate reference directions (which require
p ≥ M ) within the simplex are pursued [13]. This inevitably
pushes up the computational burden of MOEAs. To avoid
such a situation, a two-layer (boundary and inside layers)
approach for objectives over seven was proposed in [13], [31],
which uses the systematic approach to generate two reference
direction sets: one set on the boundary layer and the other on
the inside layer. Despite that the two-layer approach improves
the generation of reference directions, it still produces a large
number of reference directions for high-dimensional problems,
which will be illustrated later.

To reduce these drawbacks, we present a k-layer reference
direction generation approach. Since any reference direction
should be sampled from a unit simplex, we can partition the
unit simplex into a number of subsimplexes and then generate
a set of diverse reference directions for each subsimplex.
First, we denote the central reference direction as C =
(1/M, · · · , 1/M), and the ith extreme reference direction (the
intercept on the ith axis) as Bi = (b1, · · · , bM ) where bi = 1
and bj = 0 for all j 6= i, 1 ≤ j ≤ M , 1 ≤ i ≤ M .
Thus, the unit simplex can be partitioned into M subsimplexes,
each of which (denoted as Simp(i)) is bounded by points
C, Bi and Bi+1. In the following, we explain how to use
our proposed k-layer approach to generate reference directions
for the subsimplex Simp(i), and reference directions in other
segments can be constructed in the same way.

For the subsimplex Simp(i), we first generate points on
sides CBi and CBi+1. As illustrated in Fig. 1(a), the rth
reference direction (denoted as D

r
i ) within the line CBi can

be calculated as follows:

D
r
i = C+

r

k
(Bi −C) (1)

where r ∈ {1, · · · , k}. This generates k reference directions
(actually k layers from vertex C to the base BiBi+1) from the
central point to the ith extreme point. After that, we focus on
calculating reference directions within the rth layer. Likewise,
the tth reference direction within the line D

r
iD

r
i+1 on the rth
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Algorithm 2 Reference_Generation()

1: Input: K (number of layers), M (number of objectives),
N (archive size)

2: Output: W (reference direction set)
3: if M < 3 then

4: Use Das and Dennis’s method [9] to generate W ;
5: else

6: Generate extreme points Bi for i = 1, · · · ,M , and the
central point C;

7: for i := 1 to M do

8: for r := 1 to K do

9: Calculate all points on the r-th layer by Eq. (2);
10: end for

11: end for

12: end if

layer is computed by

D̂
t
i,r = D

t
i +

t

r + 1
(Dr

i+1 −D
t
i) (2)

where t ∈ {1, · · · , r}. This generates r reference directions for
the rth layer of Simp(i). Similarly, diverse reference direc-
tions in the rest of M−1 subsimplexes can be produced by the
above method. At last, the constructed reference direction set
W comprises the central reference direction C, and reference
directions of each layer in each subsimplex.

It is easy to see that, for k layers, the total number (Hk
M )

of reference directions for an M -objective problem is given
by

Hk
M =

M
∑

i=1

{
k
∑

r=1

r + k}+ 1 =
Mk(k + 3)

2
+ 1 (3)

For example, for M = 3 and k = 1, the reference directions
are created on a triangle with vertices at (1,0,0), (0,1,0), and
(0,0,1), including three midpoints of the sides of the triangle
and an intermediate point at (1/3,1/3,1/3). Fig. 1(b) presents a
simple example of reference direction set generated by three
layers. In this paper, for bi-objective problems, we use Das
and Dennis’s systematic approach to predefine a set of uniform
reference directions, while for M > 2, the k-layer approach
is used. The generation of a predefined reference direction set
is described in Algorithm 2.

B. Offspring Reproduction and Objective Normalization

Reproduction (line 6 in Algorithm 1) is a step to create
a new offspring population to update the parent population
P (which is actually regarded as the archive). Here, mating
selection plays a important role in reproduction. Each parent
individual P1 ∈ P needs a mate P2 ∈ P to do reproduction.
SPEA/R employs a restricted mating scheme to select the
mate P2 for P1. Specifically, K candidates different from
P1 are randomly chosen from the parent population. Then,
the candidate minimizing the Euclidean distance (in objective
space) to P1 can be screened as P2. K = 20 is recommended
in this paper based on some preliminary experiments. The
restricted mating scheme may help alleviate recombination

Algorithm 3 Objective_Normalization(Q)

1: Input: Q (combined population)
2: Output: Q (normalized population)
3: for i := 1 to M do

4: Compute the ideal point zimin := minq∈Qfi(q);
5: Compute the worst point zimax := maxq∈Qfi(q);
6: end for

7: for each member q ∈ Q do

8: Computed the normalized objective vector by Eq. (4);
9: Save the normalized q to Q;

10: end for

issues in many-objective optimization, where recombining two
distant or very different parents is too disruptive and not likely
to generate good children [13], [29].

After the production of the new offspring population P ,
SPEA/R then combines it and the parent population to form
a population Q (line 7 in Algorithm 1), which is used later to
normalize the objectives of individuals (line 8 in Algorithm 1).
The normalization procedure is described in Algorithm 3.
First, the ideal point zmin = (z1min, · · · , z

M
min) and the worst

point zmax = (z1max, · · · , z
M
max) are constructed from the

nondominated set of the combined P and P , where zimin =
min(fi(q)) and zimax = max(fi(q)), q ∈ Q, i = 1, · · · ,M .
Then, the objectives of member q are translated as follows:

f̂i(q) =
fi(q)− zimin

zimax − zimin

(4)

where i ∈ {1, · · · ,M} and f̂i(q) denotes the ith normalized
objective of member q.

C. Member Association and Fitness Assignment

After mapping the objectives of members of Q into a unit
hypercube, next we need to associate each member in the
normalized population Q with a reference direction (line 10 in
Algorithm 1). The member association procedure is presented
in Algorithm 4. For each reference direction wi ∈ W ,
i ∈ {1, · · · , Hk

M}, we define a subregion, denoted as Ψi, in
the objective space, as follows:

Ψi = {F̂ (x) ∈ Ωf |〈F̂ (x), wi〉 ≤ 〈F̂ (x), wj〉} (5)

where j ∈ {1, · · · , Hk
M}, x ∈ Ωx, F̂ (x) is the normalized

objective vector of x, and 〈F̂ (x), wj〉 is the acute angle
between vectors F̂ (x) and wj . Using this definition can easily
identify a number of members residing in Ψi, denoted as E(i),
from the normalized population Q.

The idea of decomposing the objective space has also been
employed in [7], [31], [34]. In both [7] and [34], the objective
space decomposition provides a way to approximate a small
segment of the POF, while in [31], it is used for local density
estimation and diversity maintenance.

The decomposition of objective space can facilitate fitness
assignment, as shown in Algorithm 5. In detail, each member
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Algorithm 4 Associate(Q,W, i)

1: Input: Q (combined population), W (reference direction
set)

2: Output: E(i) (individuals in the ith subregion)
3: for each q ∈ Q do

4: for each w ∈ W do

5: Compute the acute angle 〈F̂ (q), w〉
6: end for

7: Assign ŵ = w : argminw∈W 〈F̂ (q), w〉;
8: Assign θq = 〈F̂ (q), ŵ〉;
9: Save q in E(ŵ)

10: end for

a in E(i) is assigned a “local” 1 strength value S(a), repre-
senting the number of solutions it dominates in E(i):

S(a) = C({a ∈ E(i)|a � b}) (6)

where b ∈ E(i) and C(·) denotes the cardinality of a set. The
“local” strength value is then used to calculate the “local” raw
fitness R(a) of a member a in E(i), as follows:

R(a) =
∑

b∈E(i),b�a

S(b) (7)

where the “local” raw fitness depends on the strengths of
its dominators in the same subregion. Note that, similar to
SPEA2, the fitness is to be minimized here.

In the case where individuals in E(i) do not dominate each
other, their raw fitness values will be zero and the above
fitness assignment will make no sense. Fig. 2 presents such a
situation, where both a and b are in the same subregion and
they are nondominated individuals. Intuitively, a is better than
b because it is closer to the associated reference direction (y-
axis). Thus, individuals’ other information should be consid-
ered. We adopt an angle-based density estimation technique to
discriminate between individuals having identical raw fitness
values. Each individual a ∈ E(i) has a unique angle value
θa = 〈F̂ (a), wi〉, which is actually the acute angle between
F̂ (a) and the associated reference direction wi. Then, the
density D(a) of individual a is estimated by

D(a) =
θa

θa + θm
(8)

where θm = max
1≤i≤Hk

M

min
j 6=i

(wi, wj), i.e., the largest acute angle

between two neighbouring reference directions, is added to
ensure that D(a) is smaller than one. The “local” fitness value
of individual a, denoted as FVl(a), is composed of its raw
fitness and density value, combined in the following form:

FVl(a) = R(a) +D(a) (9)

This way, individuals with better local diversity and conver-
gence will have higher final fitness. Thus, a is better than b in
the case illustrated in Fig. 2.

1The term “local” used here is to clarify the difference between our fitness
assignment and that in SPEA2 [53].

Algorithm 5 Fitness_Assignment(E(i))

1: Input: E(i) (individuals in the ith subregion), Q (com-
bined population), W (reference direction set)

2: Output: FV (fitness values of members in E(i))
3: for each a ∈ E(i) do

4: Compute the “local” raw fitness R(a) using Eq. (7);
5: Estimate the density value D(a) using Eq. (8);
6: Compute the “local” fitness value FVl(a) := R(a) +

D(a);
7: Assign the final fitness value FV (a) using Eq. (10);
8: end for

w6
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e g
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d

f
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Fig. 2: Influence of decomposed subregions on environmental
selection. The grey area represents the subregion occupied
by w2, i.e., Ψ2, and the dashed lines are used to indicate d
dominates c.

Despite great benefit for subregion diversity and local
convergence, the “local” fitness assignment may impair global
convergence if all individuals in Ψi are dominated by individ-
uals in other subregions. To avoid this situation, individual a
is also assigned a “global” fitness value, denoted as FVg(a),
which is actually the raw fitness in SPEA2 (see [53]). Besides,
if a is the only member in Ψi and dominated by individuals
in other subregions, it should be given a chance to survive to
the next generation. Thus, the final fitness of a, or FV (a), is
calculated as:

FV (a) =

{

FVl(a) if |Ψi| = 1;
FVl(a) + FVg(a) otherwise .

(10)

Considering again the example in Fig. 2, individual c is
the only member in the associated subregion Ψ2, but, it is
dominated by d in another subregion. This means Ψ2 might be
an underexploited area in the objective space and the search in
this area should be enhanced. Conventional Pareto-dominance
based techniques, e.g., NASG-II and SPEA2, however, are
likely to ignore or even simply abandon important individuals
like c in this area. In contrast, the proposed fitness assignment
rewards the isolated c at an attempt to attract other individuals
toward the underexploited area. This way, the fitness assign-
ment hopefully provides a good approximation to each region
of the POF.
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Algorithm 6 Environment_Selection(Q,W )

1: Input: N (population size), Q (combined population), W
(reference direction set)

2: Output: P (new parent population).
3: Set P = ∅;
4: while C(P ) < N do

5: Set H = ∅;
6: for each reference direction i ∈ W do

7: if E(i) 6= ∅ then

8: Assign q̂ = q : argminq∈E(i)FV (q);
9: Save q̂ in H and remove it from E(i);

10: end if

11: end for

12: if C(P ∪H) <= N then

13: P = P ∪H ;
14: else

15: Fill up P with the best N−C(P ) individuals in terms
of fitness from H ;

16: end if

17: end while

D. Environmental Selection

In the environmental selection (line 13 in Algorithm 1), the
best N individuals that can balance diversity and convergence
should be preserved. Here, we present a new environmental
selection strategy, which is shown in Algorithm 6. The strategy
repeatedly selects an array (H) of individuals coming from
each subregion, and copy the selected individuals to the new
population P if the population size C(P ) is not larger than
N . Otherwise, N−C(P ) individuals from the last considered
array are required to exactly fill up the new population. In this
situation, the last array is sorted according individuals’ fitness
and then the best N − C(P ) individuals are copied to P .

It should be noted that SPEA/R adopts a diversity-first-
and-convergence-second strategy to perform the environmental
selection, which is different from most existing MOEAs.
SPEA/R repeatedly gives each subregion priority to preserve
the most promising individual in the subregion, so individuals
in the first loop (lines 6-11 in Algorithm 6) of selection have
the highest diversity, and those in the second loop has the sec-
ond highest diversity, and so on. This way, population diversity
can be well maintained. Besides, promising individuals chosen
from each subregion often have good fitness, so convergence is
also soundly considered. The selection strategy can be further
enhanced by elaborating niche count of each subregion when
performing convergence selection (line 15 of Algorithm 6) for
filling up the population P .

E. Computational Complexity of SPEA/R

The objective normalization (line 8 in Algorithm 1) requires
O(MN) computations. In line 10 of Algorithm 1, associating
a combined population of 2N individuals to Hk

M reference
directions takes O(MNHk

M ). Suppose that Li = C(E(i)), the

number of individuals in the subregion Ψi, then
∑Hk

M

i=1 Li =
N . Thus, fitness assignment for E(i) (line 11 in Algorithm

1) requires O(ML2
i ) operations. For environmental selection,

computational resources are mainly consumed by convergence
selection. In Algorithm 6, lines 6-11 require O(Hk

M ) com-
parisons and sorting (line 15) spends O(N logN). In this
paper, the population size N depends on Hk

M , as N ≈ Hk
M .

On average, the number of individuals in the ith subregion
will be Li = 2N/Hk

M ≈ 2. Thus, the average complexity
of one generational cycle of SPEA/R is O(MN2). In the
worst case, that is, all the 2N individuals get trapped into one
subregion and other subregions do not contain any member,
the computational complexity reaches O(MN2), which is the
same as the average complexity.

III. EXPERIMENTS ON MULTIOBJECTIVE OPTIMIZATION

As a starting point, SPEA/R is studied on multi-objective
problems. The test problems used here are the MOP [34]
test suite, which is a modification of ZDT [52] and DTLZ
[15] but more difficult than its predecessors. Since SPEA/R
uses a framework similar to MOEA/D-M2M [34], it will be
interesting to make a comparison between them. Additionally,
we also compared SPEA/R with a subproblem-constrained
MOEA/D, i.e., MOEA/D-ACD [44], which is a recently-
developed algorithm and has shown great promise for the
MOP test problems. These three algorithms2 employ the
recombination operator [35], as suggested in MOEA/D-M2M
[34]. For fairness, MOEA/D-ACD uses our reference direction
initialization method. The population size was set to 100
(by the systematic approach [9]) and 313 (by our k-layer
approach with k = 13) for bi- and three-objective problems,
respectively. The maximum number of generation was set to
5000 for all the problems, and each algorithm was executed 30
independent runs for each problem. A detailed description of
the MOP [34] test suite and the recombination operator [35]
is provided in the supplementary material.

A. Performance Metrics

In our experimental studies, we adopt the following widely
used performance metrics.

1) Inverted generational distance (IGD) [34]: IGD can
provide reliable information on both the diversity and con-
vergence of obtained solutions. Let PF be a set of solutions
uniformly sampled from the true POF, and PF ∗ be the approx-
imated solutions in the objective space, the metric measures
the gap between PF ∗ and PF , calculated as follows:

IGD(PF ∗, PF ) =

∑

p∈PF d(p, PF ∗)

|PF |
(11)

where d(p, PF ∗) is the distance between the member p of PF
and the nearest member of PF ∗. The sizes of the uniformly-
sampled PF are 5000 and 5050 for two and three objectives,
respectively.

2The source codes of MOEA/D-M2M and MOEA/D-ACD are from
http://www.cs.cityu.edu.hk/∼qzhang/publications.html.
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2) Hypervolume (HV) [54]: The HV metric measures
the size of the objective space dominated by the approxi-
mated solutions S and bounded by a reference point R =
(R1, . . . , RM )T that is dominated by all points on the POF,
and is computed by:

HV (S) = Leb( ∪
x∈S

[f1(x), R1]× · · · × [fM (x), RM ]) (12)

where Leb(A) is the Lebesgue measure of a set A. In our
experiments, R is set to (2.0, . . . , 2.0)T unless otherwise
stated, and the exact HV metric (calculated by the WFG
algorithm3 [40]) is considered for comparison.

B. Results on Multiobjective Optimization

Table I presents the results of SPEA/R, MOEA/D-M2M,
and MOEA/D-ACD, where mean and stand deviation values of
IGD and HV are reported and the best value for each problem
is marked in boldface. The differences between the approxi-
mations are assessed by the Wilcoxon rank-sum test [45] at the
0.05 significance level, with the standard Bonferroni correction
[1] to deal with the problem of the higher probability of Type
I errors in multiple comparisons.

The MOP [34] test suite contains seven hard-to-converge
problems. In this suite, MOP4 is the only disconnected prob-
lem, and MOP6 and MOP7 are two three-objective problems.
Besides, MOP4 to MOP7 are also diversity-resistant, which
may be a big challenge to approximating well-distributed
POFs if population diversity is not well maintained. Ta-
ble I shows that, SPEA/R performs significantly better than
MOEA/D-M2M on most of the test problems, in terms of IGD
and HV. SPEA/R competes well with MOEA/D-ACD in terms
of HV on these problems. Generally, SPEA/R mainly loses on
the three-objective MOP6. On another three-objective MOP7,
however, SPEA/R wins the comparison by a clear margin.

To have a better understanding of these algorithms’ per-
formance, approximated POFs over 30 runs for the seven
MOP problems are displayed in Fig. 3. As can be seen
from the figure, SPEA/R, MOEA/D-M2M, and MOEA/D-
ACD are all able to approximate the POF for the seven
problems, but they perform differently in terms of convergence
and diversity. Specifically, SPEA/R converges better than the
other two algorithms on the first four bi-objective problems.
On the two three-objective problems, i.e., MOP6 and MOP7,
MOEA/D-M2M cannot achieve uniformly-distributed approx-
imations and misses some boundary regions of the POF. This
means that MOEA/D-M2M may not be able to cover the
whole POF in higher-dimensional problems. MOEA/D-ACD
performs poorly in terms of diversity for MOP7, implying that
adding constraints to subproblems is not enough to deal with
hard-to-converge and diversity-resistant problems like MOP7.
In contrast, SPEA/R maintains diversity well on both MOP6
and MOP7, although it does not fully converge to the POF in
some runs.

The experiment on the MOP test suite shows that, SPEA/R
and MOEA/D-M2M perform distinctly although both share

3The latest implementation of WFG can be downloaded from
http://www.wfg.csse.uwa.edu.au/hypervolume/.

some similar properties, e.g., decomposition of the objective
space. The high performance of SPEA/R may be attributed to
its good balance between diversity and convergence, which
is achieved by our new proposed fitness assignment and
environmental selection.

C. Comparison of Evolution Behaviour with MOEA/D-M2M

Experimental results in the previous subsection have val-
idated the performance of SPEA/R, but it is still not clear
why SPEA/R performs better than MOEA/D-M2M on the
MOP test suite despite their similar framework. To answer
this question, we further compare the evolution behaviour
of these two algorithms on MOP2 and MOP3. To be more
specific, the obtained approximations of three stages, i.e., the
50th (early stage), 500th (middle stage), and 1000th generation
(late stage), are recorded, which are plotted in Fig. 4. It is
clear to see from the figure that, SPEA/R maintains good
population diversity all the time, whereas MOEA/D-M2M
tends to partition population into several subpopulations far
away from each other before the late stage, which means
diversity between neighbouring subpopulations is poorly con-
trolled. As a consequence, MOEA/D-M2M takes more effort
than SPEA/R to search unexplored regions before converging
toward the POF and providing a good distribution of popu-
lation, as illustrated by the 1000th-generation approximation
for MOP2. This reason can be also used to explain the
poor distribution of MOEA/D-M2M on the three-objective
MOP6 and MOP7 in the previous experiment. The figure also
indicates that the use of diversity-first-and-convergence-second
selection strategy can help SPEA/R to manage diversity and
convergence well during the search.

IV. EXPERIMENTS ON MANY-OBJECTIVE OPTIMIZATION

Having had a good start on multi-objective optimization,
SPEA/R is now examined on many-objective optimization.
The section contributes to making a comparison of SPEA/R
with state-of-the-art algorithms on many-objective problems.

A. Test Problems

The test problems used for algorithm comparison come from
the WFG toolkit [21]. These problems contains a number
of challenging characteristics, i.e., nonseparability, deception,
multimodality, biased attributes, and various POF geometries.
For each WFG test problem, the number of objectives varies
from two to twelve, which considers both multi-objective
and many-objective optimization. As recommended by the
developers [21], the number of decision variables of all test
instances is n = k + l, where k and l are the number
of position-related variables and distance-related variables,
respectively. k = 2 × (M − 1) and l = 10 are used in this
paper.

B. Compared Algorithms

Five popular or newly-developed MOEAs are used for
comparison in our experimental studies. They are MOEA/D
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Fig. 3: Approximated POFs for MOP test problems over 30 runs. Left column: SPEA/R; middle column: MOEA/D-M2M;
right column: MOEA/D-ACD.



9

TABLE I: Mean and stand deviation IGD and HV values on MOP problems

IGD HV
Prob. SPEA/R MOEA/D-M2M MOEA/D-ACD SPEA/R MOEA/D-M2M MOEA/D-ACD
MOP1 8.7805E-3(1.9373E-4) 9.4133E-3(8.4998E-4)‡ 9.0088E-3(1.6739E-4)† 3.6522E+0(2.8854E-4) 3.6514E+0(1.0269E-3)‡ 3.6520E+0(2.4682E-4)†

MOP2 4.2374E-3(3.8551E-5) 8.2719E-3(1.6819E-2)‡ 4.4633E-3(5.8251E-5)† 3.3264E+0(1.0877E-4) 3.3226E+0(1.8367E-2)‡ 3.3207E+0(3.8048E-4)‡

MOP3 4.8235E-3(1.4936E-4) 1.0236E-2(1.9945E-2)‡ 4.9031E-3(1.5359E-4)† 3.2101E+0(1.1819E-4) 3.1825E+0(1.1641E-1)‡ 3.2084E+0(1.1626E-3)†

MOP4 5.8664E-3(1.5107E-3) 6.5855E-3(1.6268E-3)‡ 7.7672E-3(1.5285E-3)‡ 3.5128E+0(2.3030E-3) 3.5109E+0(2.9883E-3)† 3.5071E+0(3.5365E-3)‡

MOP5 1.2053E-2(7.0952E-4) 9.3834E-3(5.1483E-4) 8.6467E-3(2.2862E-4) 3.6457E+0(1.1503E-3) 3.6502E+0(1.4470E-3) 3.6414E+0(5.7291E-3)†

MOP6 4.0020E-2(2.6624E-3) 3.8164E-2(1.6047E-3)† 2.5999E-2(3.5385E-4) 7.7687E+0(3.9912E-3) 7.7356E+0(1.4549E-2)‡ 7.7956E+0(1.6302E-3)

MOP7 5.7604E-2(2.3640E-3) 8.7838E-2(2.9091E-2)‡ 1.0901E-1(3.9980E-3)‡ 7.3919E+0(3.2270E-3) 7.3659E+0(3.0804E-2)‡ 7.3730E+0(1.6802E-2)‡

‡ and † indicate SPEA/R performs significantly better than and equivalently to the corresponding algorithm, respectively.
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Fig. 4: Evolution behaviour comparison between SPEA/R and MOEA/D-M2M for three stages on MOP2 and MOP3. Left:
50th generation; middle: 500th generation; right: 1000th generation.

[48], HypE [4], SPEA2+SDE [32], PICEA-g [43], and NSGA-
III [13], and represent different classes of metaheuristics. A
brief description of each compared algorithm is given below.

1) MOEA/D 4 [48]: it is a representative of decomposition-
based algorithms. In this paper, PBI is adopted as the ag-
gregation function for MOEA/D because it is empirically
proved to be more effective than other decomposition
methods for many-objective optimization in a recent
study [13], and normalization [48] is used for scaled
problems.

2) HypE5 [4]: it is a representative of indicator-based
MOEAs, which employs the hypervolume metric as an
indicator in the environmental selection. In HypE, the
fitness value of a solution is determined by not only its
own hypervolume contribution but also the hypervolume
contribution shared with others. Additionally, for the
sake of computational complexity, HypE uses Monte

4The code of MOEA/D is from http://dces.essex.ac.uk/staff/qzhang/.
5The code of HypE is from http://www.tik.ee.ethz.ch/pisa/.

Carlo simulation to approximate the exact hypervolume
values.

3) SPEA2+SDE6 [32]: this method introduces a density
estimator that considers both the distribution and conver-
gence information of individuals to increase the selection
pressure in many-objective optimization. SPEA2+SDE
has shown to be very promising for MaOPs [32].

4) PICEA-g7 [43]: it introduces a new concept of
preference-based coevolutionary algorithm (PICEA),
which coevolves a family of decision-maker preferences
together with a population of candidate solutions, for
many-objective optimization. PICEA-g is an implemen-
tation of such a concept, where preferences gain higher
fitness if it is satisfied by fewer solutions, and solutions
gain fitness by meeting as many preferences as possible.

6The source code of SPEA2+SDE can be downloaded from
http://www.brunel.ac.uk/ cspgmml1/home.html.

7The source code of the PICEA-g algorithm can be downloaded from
http://www.sheffield.ac.uk/acse/staff/rstu/ruiwang/index.
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TABLE II: Population size for different algorithms using the
k-layer approach

M k Hk

M
MOEA/D NSGA-III SPEA/R

2 - 100 100 100 100
3 7 105 105 108 108
5 7 175 175 176 176
8 6 217 217 220 220

12 5 241 241 244 244

5) NSGA-III8 [13]: it is an upgraded version of the most
popular dominance-based NSGA-II algorithm, where
a number of supplied reference points is used as a
guideline for handling MaOPs. The basic framework of
NSGA-III remains similar to NSGA-II, except that it
maintains population diversity by niche preservation.

C. Parameter Settings

The parameters of the six MOEAs considered in the exper-
iments are referenced from their original papers. Some key
parameters in these algorithms were set as follows:

1) Reproduction parameters: All the algorithms used the
simulated binary crossover (SBX) and polynomial mu-
tation [13] as their genetic operators. The crossover
probability was pc = 1.0 and its distribution index was
ηc = 20. The mutation probability was pm = 1/n and
its distribution ηm = 20.

2) Population size: The population sizes (N ) of different
algorithms are presented in Table II. The population
sizes of all the algorithms except MOEA/D were set
as 4⌈Hk

M/4⌉, which is the smallest multiple of four not
smaller than Hk

M , according to the suggestion in [13]. In
other words, HypE, PICEA-g, and SPEA2+SDE use the
same population size settings as NSGA-III and SPEA/R.

3) Stopping criterion and the number of executions: Each
algorithm was terminated after a pre-specified number
of generations. To be specific, for WFG problems,
each algorithm stops after 300, 600, 1000, 1500, and
2000 generations for 2-, 3-, 5-, 8-, 12-objective cases,
respectively. Additionally, each algorithm was executed
30 independent times on each test instance.

D. Experimental Results and Analysis

The performance measures for quantifying the performance
of the compared algorithms in this section are IGD [13] and
HV [54]. Note that, the POF points used for computing IGD
here are a set of target points on the POF associated with ref-
erence directions, as suggested in [13]. For HV computation,
the ith objective of the reference point used is 2i+2 for all the
WFG problems, and the HV values presented in this paper are
all normalized to [0, 1] by dividing

∏M

i=1 (2i+ 2). The IGD
and HV values of six algorithms on nine WFG test problems
are presented in Tables III and IV, respectively.

The WFG1 problem mainly examines whether an MOEA
can handle bias and mixed POF shapes. Both IGD and HV
metrics indicate that PICEA-g is more suitable for this kind

8The source code of NSGA-III (version 1.1) can be downloaded from
http://web.ntnu.edu.tw/∼tcchiang/publications/nsga3cpp/nsga3cpp.htm.

of problem than the other compared algorithms. SPEA/R
competes well and even outperforms the others for relatively
low-dimensional cases. But, it is defeated by NSGA-III on the
12-objective WFG1 in terms of the HV metric.

WFG2 challenges algorithms’ ability to locate all discon-
nected POF segments and handle nonseparable variable depen-
dencies. For this problem, all the algorithms can achieve im-
pressive performance in low-dimensional cases, and SPEA/R
wins by a clear margin. However, when the number of objec-
tives is over five, the performance of MOEA/D and NSGA-III
degrades sharply whereas SPEA/R continues to yield good
results. SPEA/R wins in the 8-objective case and can compete
with HypE and SPEA2+SDE in the 12-objective case, as
indicated by both IGD and HV metrics. This means SPEA/R
can deal with disconnectivity.

WFG3 features a degenerated and linear POF shape and
its variable is nonseparable as well. For this problem, while
SPEA/R performs best for the 2-objective case, its perfor-
mance degrades sharply when the number of redundant objec-
tives increases, which is also the case for the other algorithms
except PICEA-g. PCIEA-g is roughly the best performer for
this problem because it generates nondominated reference
points in the objective space to guide the search in every
generation. The other algorithms to a certain extent try to
spread population over the whole objective space for the
sake of diversity, leading to a very limited number of points
on the degenerated POF. Despite that, SPEA/R outperforms
MOEA/D and NSGA-III and performs competitively with
SPEA2+SDE for the 8- and 12-objective cases. This may be
because fitness assignment in SPEA/R favours nondominated
solutions.

The problems WFG4 to WFG9 have an identical hyperel-
lipse surface, but they differ in some other characteristics. To
be specific, WFG4 introduces multimodality to test algorithms’
ability to escape from local optima, and WFG5 is a deceptive
problem, and the difficulty lies in the large “aperture” size of
the well/basin leading to the global minimum. WFG6 has a
significant nonseparable reduction, and WFG7-9 all introduce
some bias to challenge algorithms’ diversity, but WFG8-9 are
nonseparable. Also, variable linkages in WFG8 are much more
difficult than that in WFG9.

For WFG4-WFG9, SPEA/R wins nearly all the tested cases
in terms of IGD and HV, showing high ability to deal with
a number of considered characteristics in these problems.
Considering the HV metric, PICEA-g also achieves very
competitive results on these problems, and outperforms or
compares well with SPEA/R in some cases. However, none
of the other algorithms can compete with SPEA/R.

The above experimental studies show that the tested algo-
rithms’ performance can be influenced by at least two factors,
i.e., problem characteristics and the number of objectives.
Clearly, degeneration in WFG3 poses a big challenge to
reference-based algorithms, i.e., MOEA/D, NSGA-III, and
SPEA/R, as they roughly pursue diversified population over
the whole objective space. On the other hand, an increase in
the number of objectives to some extent influences all the
tested algorithms. MOEA/D is the most influenced one among
six algorithms, which experiences a sharp drop when the num-
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TABLE III: Mean and standard deviation IGD values obtained by six algorithms for WFG problems

Prob. M HypE PICEA-g MOEA/D NSGA-III SPEA2+SDE SPEA/R

WFG1

2 8.8317E-1(3.0615E-2)† 8.4573E-1(7.7703E-2)† 1.0781E+0(4.1187E-2)‡ 1.0260E+0(5.5762E-2)‡ 8.2124E-1(3.9450E-2) 9.0085E-1(2.0778E-2)
3 1.2748E+0(4.3651E-2)‡ 7.8534E-1(8.9205E-2) 1.2041E+0(3.1711E-2)† 1.3784E+0(4.0202E-2)‡ 1.2648E+0(2.3129E-2)‡ 1.1794E+0(2.4394E-2)
5 1.8676E+0(6.2653E-2)‡ 5.3311E-1(1.3060E-1) 1.4877E+0(3.0123E-2)† 2.0084E+0(1.0479E-1)‡ 1.8980E+0(1.6956E-2)‡ 1.4780E+0(3.5911E-2)
8 2.5670E+0(6.2118E-2)† 1.4327E+0(1.4821E-1)† 2.7002E+0(3.2555E-1)‡ 2.7334E+0(9.6093E-2)‡ 2.7327E+0(6.3839E-2)‡ 1.5879E+0(6.9790E-2)

12 3.6640E+0(4.1488E-1) 3.2660E+0(6.1898E-1) 4.9319E+0(7.5027E-1)† 4.8169E+0(2.8691E-1)† 3.6292E+0(8.4763E-2) 4.7653E+0(7.7595E-1)

WFG2

2 1.3134E-1(5.5902E-2)‡ 8.6982E-2(6.4363E-2)‡ 6.5756E-1(2.4753E-1)‡ 9.8399E-2(7.0368E-2)‡ 8.6488E-2(6.8054E-2)‡ 5.3339E-2(5.9669E-2)

3 3.9965E-1(9.4628E-2)‡ 3.0184E-1(1.3370E-1)‡ 1.6004E+0(5.1826E-1)‡ 2.7108E-1(1.9464E-1)‡ 2.9113E-1(1.3529E-1)‡ 1.9273E-1(1.4337E-1)

5 1.0282E+0(3.1081E-1)‡ 6.9710E-1(3.7222E-1)‡ 3.4876E+0(9.7999E-1)‡ 6.1589E-1(5.8567E-1)‡ 5.2034E-1(1.8118E-1)‡ 4.1324E-1(1.9367E-1)

8 1.6356E+0(2.0123E-1)‡ 1.0825E+0(3.2538E-1)‡ 6.9688E+0(3.6616E+0)‡ 2.5990E+0(5.5451E-1)‡ 1.0398E+0(8.0346E-2)† 9.2918E-1(1.5704E-2)

12 3.6569E+0(1.0009E+0)‡ 1.9909E+0(1.6166E-1)† 1.4420E+1(7.0122E+0)‡ 5.3146E+0(2.1231E+0)‡ 2.0416E+0(2.9444E-1)† 1.9406E+0(4.8101E-1)

WFG3

2 6.1055E-2(2.1969E-2)‡ 1.5970E-2(1.0060E-3)‡ 2.1120E-2(1.0954E-2)‡ 1.7672E-2(3.9260E-3)‡ 1.4922E-2(1.3055E-3)‡ 9.5981E-3(1.4972E-3)

3 3.6647E-1(7.0170E-2)‡ 1.2092E-1(8.5003E-3)† 8.4610E-2(2.0841E-2) 1.1033E-1(1.9565E-2)‡ 1.0415E-1(9.6999E-3) 1.2706E-1(1.9111E-2)
5 8.7070E-1(3.4817E-1)‡ 4.2029E-1(2.6257E-2)† 2.1410E-1(9.2308E-3) 3.9046E-1(5.6144E-2) 6.8446E-1(7.4234E-2)‡ 4.7455E-1(5.0952E-2)
8 1.2895E+0(3.8251E-1) 1.0091E+0(1.1303E-1) 8.6567E+0(2.5278E-2)‡ 2.4852E+0(1.3923E+0)‡ 2.3216E+0(2.1709E-1)‡ 1.8096E+0(7.9589E-1)

12 2.1678E+0(6.4471E-1)† 1.5164E+0(4.9334E-1) 1.3202E+1(5.0194E-2)‡ 6.1449E+0(1.0145E+0)‡ 4.3313E+0(2.2150E-1)‡ 2.2071E+0(8.9759E-1)

WFG4

2 3.1877E-2(6.5145E-3)‡ 1.6304E-2(1.2351E-3)‡ 2.7940E-2(6.4054E-3)‡ 1.2596E-2(3.0353E-3)‡ 3.0674E-2(6.3801E-3)‡ 4.0642E-3(6.3104E-4)

3 5.6412E-1(8.5813E-2)‡ 2.0043E-1(7.9213E-3)‡ 6.9098E-2(1.0745E-2)‡ 6.3007E-2(5.4682E-3)‡ 2.9956E-1(1.5741E-2)‡ 2.8864E-2(2.1139E-3)

5 2.0444E+0(2.2951E-1)‡ 1.1045E+0(4.7317E-1)‡ 1.4182E-1(1.4965E-2)‡ 3.6864E-1(4.4117E-1)‡ 1.2366E+0(7.4328E-2)‡ 1.0932E-1(7.3118E-3)

8 6.0523E+0(1.5295E+0)‡ 6.6026E+0(7.9339E-1)‡ 1.4683E+1(1.1304E+0)‡ 2.3447E+0(8.3237E-1)‡ 3.7387E+0(2.1384E-1)‡ 3.0963E-1(4.4228E-2)

12 1.1022E+1(1.4125E+0)‡ 1.4136E+1(9.6910E-1)‡ 2.4085E+1(3.8119E-7)‡ 9.3126E+0(9.3937E-1)‡ 7.8294E+0(2.7645E-1)‡ 5.545E-1(5.8877E-2)

WFG5

2 1.4442E-1(2.9026E-2)‡ 6.9351E-2(1.8443E-3)† 7.2942E-2(1.6355E-3)† 6.9201E-2(1.9862E-3)‡ 8.1770E-2(4.0625E-3)‡ 6.8656E-2(6.0334E-4)

3 7.9362E-1(1.4324E-1)‡ 2.1530E-1(6.1536E-3)‡ 1.0567E-1(4.0651E-3)† 2.1164E-1(1.2089E-2)‡ 2.8447E-1(1.1878E-2)‡ 1.0007E-1(2.7774E-3)

5 2.3647E+0(5.0181E-1)‡ 9.3128E-1(1.7072E-2)‡ 1.7300E-1(2.0329E-2)‡ 3.6011E-1(2.7441E-2)‡ 1.1152E+0(5.7730E-2)‡ 1.5221E-1(3.3155E-3)

8 5.0708E+0(9.3870E-1)‡ 3.6695E+0(6.6358E-1)‡ 1.4665E+1(1.6616E-1)‡ 1.0424E+0(1.2969E+0)‡ 3.0894E+0(1.6408E-1)‡ 2.9294E-1(7.8991E-3)

12 1.1590E+1(3.7303E+0)‡ 1.1189E+1(6.7757E-1)‡ 2.3809E+1(3.6910E-2)‡ 1.1152E+1(1.7458E+0)‡ 6.8783E+0(3.5983E-1)‡ 5.9182E-1(5.6574E-2)

WFG6

2 9.5505E-2(2.7439E-2)‡ 8.7771E-2(1.6443E-2)† 1.2231E-1(2.9457E-2)‡ 6.2542E-2(8.0865E-3) 8.3074E-2(2.2805E-2)† 8.2235E-2(1.7636E-2)
3 5.0657E-1(5.9845E-2)‡ 2.2653E-1(1.1940E-2)‡ 1.6990E-1(4.3933E-2)‡ 1.3889E-1(1.6059E-2)† 3.0489E-1(2.5190E-2)‡ 1.2494E-1(1.8689E-2)

5 1.7161E+0(1.7421E-1)‡ 9.3252E-1(2.8199E-2)‡ 2.4944E-1(5.9006E-2)‡ 2.5876E-1(1.8224E-2)‡ 1.1083E+0(4.5895E-2)‡ 1.9652E-1(2.1632E-2)

8 3.5742E+0(2.2169E-1)‡ 2.4527E+0(1.0243E-1)‡ 1.3441E+1(3.4359E+0)‡ 3.5306E-1(3.9311E-2)‡ 2.8712E+0(1.5114E-1)‡ 3.1442E-1(4.5861E-2)

12 8.5555E+0(1.2719E+0)‡ 8.3868E+0(1.5120E+0)‡ 2.4086E+1(1.0499E-3)‡ 1.2026E+0(1.4127E+0)‡ 6.5637E+0(3.4155E-1)‡ 5.6185E-1(6.4777E-2)

WFG7

2 8.2165E-2(2.8926E-2)‡ 1.5910E-2(6.6738E-4)‡ 2.3036E-2(5.5223E-3)‡ 6.1770E-3(1.2478E-3)‡ 2.9225E-2(4.7514E-3)‡ 3.0428E-3(6.4407E-4)

3 6.6418E-1(9.6773E-2)‡ 1.9958E-1(6.0806E-3)‡ 1.0757E-1(6.5050E-2)‡ 4.5169E-2(5.3488E-3)‡ 2.6732E-1(1.8452E-2)‡ 1.7752E-2(2.2178E-3)

5 2.1347E+0(2.2676E-1)‡ 9.3521E-1(2.3560E-2)‡ 1.3512E-1(2.0759E-2)‡ 1.9524E-1(3.9223E-2)‡ 1.2314E+0(7.5941E-2)‡ 7.6146E-2(6.0145E-3)

8 5.7576E+0(1.2137E+0)‡ 4.7858E+0(1.3194E+0)‡ 4.1326E+0(4.8119E+0)‡ 1.9059E+0(5.2245E-1)‡ 3.3239E+0(2.3293E-1)‡ 4.4555E-2(1.4906E-3)

12 1.3634E+1(2.8675E+0)‡ 1.1684E+1(1.1888E+0)‡ 1.8854E+1(7.2573E+0)‡ 9.0098E+0(1.1672E+0)‡ 7.2319E+0(2.0432E-1)‡ 1.2239E+0(1.7913E-1)

WFG8

2 1.1761E-1(1.3492E-2)‡ 1.7830E-1(8.4903E-3)‡ 1.9949E-1(7.7770E-2)‡ 1.0440E-1(4.4972E-3)‡ 9.6227E-2(7.0488E-3)‡ 6.5348E-2(8.3518E-3)

3 6.4260E-1(9.6987E-2)‡ 3.6302E-1(6.6066E-3)‡ 2.9721E-1(1.8361E-2)‡ 2.6280E-1(1.1173E-2)‡ 3.9859E-1(1.2363E-2)‡ 1.8791E-1(1.2203E-2)

5 3.0822E+0(3.6658E-1)‡ 1.1359E+0(1.5299E-1)‡ 6.2743E-1(2.4932E-2)‡ 6.2983E-1(3.4558E-2)‡ 1.3975E+0(7.1725E-2)‡ 4.4959E-1(6.3168E-2)

8 6.6256E+0(6.9786E-1)‡ 4.8593E+0(6.4988E-1)‡ 1.4786E+1(5.2920E-1)‡ 3.9291E+0(8.5793E-1)‡ 3.6385E+0(1.3014E-1)‡ 7.7559E-1(1.7947E-1)

12 1.2621E+1(1.3872E+0)‡ 1.2125E+1(8.1783E-1)‡ 2.4081E+1(1.6969E-2)‡ 9.5723E+0(7.4981E-1)‡ 7.5282E+0(2.7831E-1)‡ 25918E+0(1.5246E+0)

WFG9

2 1.1042E-1(2.1126E-1)‡ 2.5073E-2(2.0117E-3)‡ 1.1382E-1(9.2790E-2)‡ 4.1288E-2(3.6557E-2)‡ 4.6615E-2(4.5168E-2)‡ 2.3333E-2(1.8028E-3)

3 8.5309E-1(3.9767E-1)‡ 2.0280E-1(5.3020E-3)‡ 3.6735E-1(8.0129E-2)‡ 2.1455E-1(2.8924E-2)‡ 2.8436E-1(2.9944E-2)‡ 1.3565E-1(6.0332E-2)

5 2.2225E+0(5.9275E-1)‡ 9.0468E-1(2.3965E-2)‡ 5.6825E-1(5.1271E-2)‡ 4.7457E-1(2.0885E-2)† 1.2446E+0(1.0233E-1)‡ 4.4527E-1(1.0612E-1)

8 5.6313E+0(2.0539E+0)‡ 2.3506E+0(1.8201E-1)‡ 1.4075E+1(3.1523E+0)‡ 1.4547E+0(7.5551E-1)‡ 3.2874E+0(2.1696E-1)‡ 1.0596E+0(2.1459E-1)

12 1.1425E+1(4.1445E+0)‡ 9.0759E+0(1.1149E+0)‡ 2.3886E+1(1.0426E-1)‡ 7.0250E+0(2.2799E+0)‡ 6.8976E+0(3.8740E-1)‡ 1.9587E+0(4.1090E-1)

‡ and † indicate SPEA/R performs significantly better than and equivalently to the corresponding algorithm, respectively.

ber of objectives increases from five to twelve, as indicated by
the deterioration of IGD and HV. This is consistent with some
recent studies [31], [47]. This observation shows MOEA/D
struggles to solve difficult many-objective WFG problems.

To understand why SPEA/R generally performs better than
the other algorithms, we graphically plot the parallel coor-
dinates (normalized by the nadir point) of final solutions
obtained by each algorithm for the 12-objective WFG4 in
Fig. 5. For the inspection of parallel coordinates for several
other WFG instances, the interested readers are referred to
the supplementary material. The figure clearly shows that
SPEA/R is able to obtain a good spread of solutions in the
entire range of the POF (fi ∈ [0, 2i], for all i), whereas
HypE, PICEA-g, MOEA/D, and NSGA-III miss some part
of the POF. Due to effective density estimation, SPEA2+SDE
shows very competitive diversity performance, but it does not
cover well the entire POF. Thus, we can conclude that the
outperformance of SPEA/R over the other algorithms results

largely from its sound diversity maintenance and its effective
fitness assignment capable of driving population toward the
POF.

V. INVESTIGATIONS AND DISCUSSIONS

A. Comparison of Different Reference Direction Generation

Approaches

As the population size (Popsize) of MOEAs is closely as-
sociated with the amount of reference directions, we compare
our proposed k-layer approach with the systematic approach
used in MOEA/D [48] and the two-layer approach used in
NSGA-III [13] in terms of required Popsize for different
numbers of objectives. Since the two-layer approach is an
improved version of the systematic approach for generating
reference directions in the case of 7 or more objectives, we
just need to compare our k-layer approach with the former
and the latter in low-dimensional cases and high-dimensional
cases, respectively.
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TABLE IV: Mean and standard deviation HV values obtained by six algorithms for WFG problems

Prob. M HypE PICEA-g MOEA/D NSGA-III SPEA2+SDE SPEA/R

WFG1

2 6.1349E-1(8.4520E-3)† 6.2383E-1(2.1342E-2) 5.2963E-1(2.6156E-2)‡ 5.2796E-1(2.1870E-2)‡ 6.3186E-1(1.1067E-2) 6.0736E-1(5.9395E-3)
3 5.9929E-1(8.2784E-3)‡ 7.3526E-1(2.6053E-2) 5.8131E-1(2.7399E-2)‡ 5.4419E-1(2.4954E-2)‡ 6.0147E-1(6.0920E-3)‡ 6.2420E-1(6.0584E-3)
5 5.2153E-1(7.6354E-3)‡ 9.1200E-1(5.4121E-2) 5.7746E-1(7.5357E-3)‡ 5.4737E-1(1.7873E-2)‡ 5.0145E-1(3.6774E-3)‡ 5.7919E-1(5.4070E-3)
8 4.3738E-1(1.3688E-2)‡ 9.3707E-1(2.1198E-2) 4.3174E-1(4.4287E-2)‡ 4.8199E-1(1.7796E-2)‡ 4.2294E-1(2.3498E-3)‡ 6.2128E-1(7.8831E-2)
12 3.7561E-1(4.6241E-3)‡ 9.2162E-1(2.9084E-2) 3.2474E-1(7.3978E-2)‡ 7.4386E-1(4.0646E-2) 3.6416E-1(3.7633E-3)‡ 4.2884E-1(5.9670E-2)

WFG2

2 7.9746E-1(3.0072E-2)‡ 8.1726E-1(3.3376E-2)‡ 6.5750E-1(5.0778E-2)‡ 8.0801E-1(3.4064E-2)‡ 8.1659E-1(3.4444E-2)‡ 8.3092E-1(2.9447E-2)

3 9.2195E-1(5.6280E-2)‡ 9.0282E-1(6.9396E-2)‡ 6.4363E-1(7.0612E-2)‡ 9.1538E-1(6.8576E-2)‡ 9.0856E-1(6.6674E-2)‡ 9.4106E-1(6.0781E-2)

5 9.2808E-1(7.4718E-2)‡ 9.4948E-1(7.9765E-2)‡ 6.2190E-1(8.7394E-2)‡ 9.6131E-1(6.1941E-2)‡ 9.7887E-1(3.5391E-2)‡ 9.8674E-1(3.7587E-2)

8 9.7630E-1(3.8039E-3)‡ 9.8194E-1(5.5797E-2)‡ 5.5675E-1(2.5975E-1)‡ 9.1862E-1(1.0630E-1)‡ 9.8544E-1(2.1334E-3)‡ 9.9759E-1(6.6128E-4)

12 9.6801E-1(1.1392E-2)‡ 9.9860E-1(8.5921E-4) 3.3908E-1(3.1366E-1)‡ 7.9068E-1(1.6581E-1)‡ 9.7314E-1(3.9702E-2)‡ 9.8832E-1(9.2631E-2)

WFG3

2 8.1688E-1(4.4403E-3)‡ 8.2899E-1(4.8416E-4)† 8.2486E-1(4.3417E-3)‡ 8.2634E-1(1.1226E-3)‡ 8.2739E-1(1.0559E-3)‡ 8.2945E-1(1.3184E-3)

3 7.5060E-1(9.0712E-3)‡ 8.9256E-1(7.5315E-4) 7.9356E-1(5.8079E-3) 7.8197E-1(4.1079E-3)† 7.8383E-1(4.3288E-3)‡ 7.7947E-1(8.0418E-3)
5 6.6263E-1(2.6816E-2)‡ 9.5989E-1(1.2055E-3) 7.3844E-1(5.3374E-3) 7.1730E-1(7.5465E-3)† 6.8788E-1(1.3525E-2)† 6.8696E-1(1.1909E-2)
8 6.0613E-1(2.3359E-2) 9.8966E-1(5.0622E-4) 1.2210E-1(1.2553E-3)‡ 4.6929E-1(1.0987E-1)‡ 4.8493E-1(3.3216E-2)† 4.9757E-1(4.4357E-2)
12 5.6477E-1(2.7196E-2) 9.5252E-1(6.7478E-2) 8.6302E-2(1.5356E-3)‡ 3.3546E-1(3.7684E-2)‡ 3.2742E-1(6.1689E-3)‡ 4.8913E-1(4.4723E-2)

WFG4

2 7.2511E-1(6.1498E-3)‡ 7.3428E-1(5.4716E-4)† 7.2972E-1(1.3665E-3)‡ 7.3314E-1(9.9494E-4)‡ 7.1096E-1(1.1254E-2)‡ 7.3497E-1(6.0901E-4)

3 8.2289E-1(2.1555E-2)‡ 8.4966E-1(1.1654E-3)† 8.3709E-1(2.2772E-3)‡ 8.3960E-1(1.2736E-3)‡ 7.6916E-1(1.1329E-2)‡ 8.5842E-1(9.0221E-4)

5 7.4786E-1(3.9699E-2)‡ 9.1105E-1(7.2895E-2)‡ 9.1690E-1(1.2970E-3)‡ 8.7615E-1(4.9747E-2)‡ 7.5415E-1(1.2288E-2)‡ 9.2169E-1(1.2998E-3)

8 5.8468E-1(6.8400E-2)‡ 7.0094E-1(7.4721E-2)‡ 1.3762E-1(8.1625E-2)‡ 8.0583E-1(4.5507E-2)‡ 5.8432E-1(2.5894E-2)‡ 9.5797E-1(3.9059E-3)

12 5.3389E-1(5.8040E-2)‡ 6.6260E-1(7.2208E-2)‡ 7.6923E-2(5.9845E-9)‡ 7.1332E-1(3.0720E-2)‡ 5.3058E-1(3.7951E-2)‡ 9.1609E-1(7.8544E-2)

WFG5

2 6.8762E-1(4.8597E-3)‡ 7.0799E-1(2.7043E-3)‡ 7.0280E-1(1.5455E-3)† 7.0558E-1(3.3458E-3)† 6.8987E-1(7.5992E-3)‡ 7.1227E-1(9.3626E-4)

3 7.6888E-1(2.2719E-2)‡ 8.2305E-1(1.5867E-3)† 8.1368E-1(2.3212E-3)† 8.0667E-1(2.8385E-3)‡ 7.7206E-1(7.9184E-3)‡ 8.2437E-1(2.0573E-3)

5 7.4369E-1(5.0270E-2)‡ 9.0566E-1(1.5576E-3) 8.7778E-1(2.3524E-3)† 8.4922E-1(3.6613E-3)‡ 7.8108E-1(1.0898E-2)‡ 8.8792E-1(1.1292E-3)
8 6.0049E-1(7.9653E-2)‡ 8.4677E-1(4.8498E-2)‡ 1.0334E-1(5.3172E-3)‡ 8.5495E-1(6.6536E-2)‡ 6.9019E-1(1.6596E-2)‡ 9.0023E-1(2.9488E-3)

12 4.3256E-1(6.7488E-2)‡ 7.3490E-1(4.4608E-2)‡ 6.8603E-2(8.1182E-4)‡ 6.3626E-1(5.0428E-2)‡ 5.9168E-1(2.0913E-2)‡ 9.0236E-1(6.6030E-3)

WFG6

2 6.9937E-1(1.1071E-2)† 7.0821E-1(5.5304E-3)† 6.9412E-1(1.0969E-2)‡ 7.1557E-1(3.0357E-3) 6.9758E-1(1.5288E-2)† 7.1001E-1(6.5120E-3)
3 7.8656E-1(1.1842E-2)‡ 8.1866E-1(6.8386E-3)‡ 8.0201E-1(1.2884E-2)‡ 8.1457E-1(4.2668E-3)‡ 7.7216E-1(1.2142E-2)‡ 8.2552E-1(6.3065E-3)

5 8.0206E-1(2.2080E-2)‡ 8.9790E-1(1.0352E-2)† 8.6441E-1(1.4974E-2)‡ 8.6594E-1(5.3327E-3)‡ 7.7777E-1(1.3556E-2)‡ 8.9930E-1(7.7577E-3)

8 7.0169E-1(5.5025E-2)‡ 9.2290E-1(7.9111E-3)† 1.9017E-1(1.8471E-1)‡ 9.0534E-1(9.3956E-3)‡ 7.2350E-1(1.6221E-2)‡ 9.2855E-1(1.5045E-2)

12 5.1133E-1(4.6498E-2)‡ 8.2963E-1(5.2905E-2)‡ 6.8017E-2(2.6487E-3)‡ 9.0514E-1(3.8475E-2)† 6.3134E-1(2.2436E-2)‡ 9.1604E-1(1.2921E-2)

WFG7

2 7.1926E-1(4.5563E-3)‡ 7.3505E-1(2.4614E-4)† 7.3136E-1(1.0965E-3)‡ 7.3510E-1(3.1131E-4)† 7.2082E-1(8.9974E-3)‡ 7.3615E-1(1.1625E-3)

3 8.1856E-1(1.4867E-2)‡ 8.5110E-1(8.3476E-4)† 8.3278E-1(1.5401E-2)‡ 8.4263E-1(1.1488E-3)‡ 7.9338E-1(1.3433E-2)‡ 8.5171E-1(3.4081E-4)

5 7.4819E-1(5.6439E-2)‡ 9.4257E-1(9.5013E-4) 9.2071E-1(1.3121E-3)‡ 8.9358E-1(4.7463E-3)‡ 7.4066E-1(1.4528E-2)‡ 9.2528E-1(6.1088E-4)
8 5.8792E-1(7.2407E-2)‡ 8.2636E-1(8.6834E-2)‡ 7.4490E-1(2.7588E-1)‡ 8.4280E-1(2.5436E-2)‡ 6.9531E-1(1.9407E-2)‡ 9.5110E-1(1.7669E-2)

12 4.6000E-1(8.2486E-2)‡ 7.6346E-1(6.1408E-2)‡ 2.7676E-1(2.8129E-1)‡ 7.5706E-1(3.6351E-2)‡ 6.3525E-1(2.3553E-2)‡ 9.4407E-1(9.1515E-3)

WFG8

2 6.7904E-1(1.0189E-2)‡ 6.7029E-1(3.8045E-3)‡ 6.6299E-1(2.3559E-2)‡ 6.9584E-1(1.4755E-3)‡ 6.8948E-1(4.3227E-3)‡ 7.0318E-1(3.3615E-3)

3 7.2386E-1(2.5175E-2)‡ 7.7446E-1(2.1990E-3)‡ 7.6918E-1(4.6432E-3)‡ 7.9129E-1(2.5827E-3)‡ 7.2355E-1(8.3819E-3)‡ 8.0651E-1(5.3416E-3)

5 6.2664E-1(4.0359E-2)‡ 8.3085E-1(1.5580E-2)‡ 7.9897E-1(1.7626E-3)‡ 7.9816E-1(5.4098E-3)‡ 7.0110E-1(1.1835E-2)‡ 8.5983E-1(1.8504E-2)

8 5.6633E-1(4.5007E-2)‡ 8.0925E-1(4.2507E-2)‡ 1.2037E-1(2.3436E-2)‡ 7.3449E-1(1.9296E-2)‡ 6.3416E-1(1.7580E-2)‡ 8.8805E-1(3.8120E-2)

12 5.4577E-1(6.2990E-2)‡ 7.4233E-1(4.8267E-2)‡ 7.6453E-2(2.1549E-3)‡ 6.9534E-1(3.5933E-2)‡ 5.5797E-1(1.9437E-2)‡ 8.7084E-1(2.2243E-1)

WFG9

2 6.9556E-1(3.9680E-2)‡ 7.1483E-1(8.6702E-4)† 6.8383E-1(2.8965E-2)‡ 7.0797E-1(1.1834E-2)‡ 7.0116E-1(1.4582E-2)‡ 7.1499E-1(1.4646E-3)

3 7.4158E-1(7.1225E-2)‡ 8.1680E-1(2.8524E-3)† 7.2575E-1(2.5631E-2)‡ 7.8864E-1(1.2055E-2)‡ 7.6490E-1(1.6052E-2)‡ 8.2240E-1(2.2316E-2)

5 6.4243E-1(1.0678E-1)‡ 8.5030E-1(5.3667E-2)† 7.5157E-1(2.2857E-2)‡ 7.9189E-1(3.9893E-3)‡ 7.1535E-1(2.8081E-2)‡ 8.6833E-1(4.2512E-2)

8 4.4778E-1(1.0543E-1)‡ 8.4756E-1(5.2963E-2) 1.2548E-1(1.6679E-1)‡ 7.5797E-1(2.7755E-2)‡ 6.3961E-1(1.9066E-2)‡ 8.1250E-1(4.0473E-2)
12 3.8782E-1(1.3885E-1)‡ 7.7356E-1(4.2001E-2)‡ 5.9415E-2(6.0946E-3)‡ 6.6920E-1(3.6199E-2)‡ 5.9417E-1(2.9346E-2)‡ 7.8937E-1(4.7711E-2)

‡ and † indicate SPEA/R performs significantly better than and equivalently to the corresponding algorithm, respectively.

The results are given in Fig. 6, where for each approach,
20 different levels of Popsize are continuously sampled.
Clearly, for three objectives, the systematic approach shows
better Popsize settings than the k-layer approach. However,
when M is increased from 5 to 7, the k-layer approach has
more choice to set the population size in the range of 10
to 1000. For 8-objective problems, the two-layer approach
works slightly better than the k-layer method, but for much
higher objectives, the Popsize generated by the two-layer
approach grows very fast, particularly for 30 objectives. In this
case, the k-layer approach gives more options to configure a
desirable population size. Thus, in comparison with the other
two approaches, the k-layer approach appears more suitable
for generating a reasonable size of population for MaOPs with
a large number of objectives.

The uniformity of reference sets generated by different
approaches is investigated on different levels of population
size and various number of objectives. The most widely used

discrepancy measure, i.e., centred L2-discrepancy (CD2) [20],
is employed to measure the uniformity of generated reference
sets. Comparisons between the simplex-lattice design [13],
[48] and our k-layer approach is provided in the supplementary
material. The comparisons indicate that the k-layer approach
can generate a reference set that covers the whole reference
vector space in a good manner.

B. SPEA/R vs NSGA-III

SPEA/R and NSGA-III share some similarities in the way
that they keep diversity with the aid of reference directions.
Besides different methods for constructing reference direc-
tions, there are several key differences between them, resulting
in distinct search behaviours. First, SPEA/R introduces a
restricted mating selection to enhance reproduction instead of
random selection, which is very helpful for many-objective
optimization where distant parents are not likely to generate
good solutions. Second, SPEA/R uses a simple normalization
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Fig. 5: Parallel coordinates of final solutions obtained by six algorithms for the 12-objective WFG4 instance.
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Fig. 6: Comparison of the population size required by different methods: (a) the systematic approach and k-layer approach for
low-dimensional cases; (b) the two-layer approach and k-layer approach for high-dimensional cases.

method based on the worst value of each objective, whereas
normalization in NSGA-III requires intercept computation and
hyperplane construction, which are computationally expensive,
particularly for many-objective problems, and NSGA-III may
also have difficulty in hyperplane construction due to dupli-
cate extreme points. Third, niche preservation strategies are
different in SPEA/R and NSGA-III. Whenever preserving a
member from the last front considered, NSGA-III tries to
repeatedly identify reference directions having the worst niche
count, which is the number of members associated with these
reference directions that has been preserved in higher fronts
(the higher, the better). This procedure is computationally
inefficient. Furthermore, this strategy may result in some iso-
lated but promising members in lower fronts being abandoned

if nondominated sorting terminates before considering these
lower fronts, implying that population diversity in NSGA-III
is still not well maintained. In contrast, as illustrated in Section
III-C, SPEA/R intentionally gives higher priority to diversity
than convergence when performing environmental selection,
leading to impressive performance on MOP problems, and the
niche preservation strategy in SPEA/R has also been further
validated on multi- and many-objective WFG problems.

Generally, normalization and niche preservation are all
aimed to help keep diversity. To understand the second and
third differences, we tested SPEA/R and NSGA-III on dis-
parately scaled three-objective WFG5. That is, the objectives
f1, f2, and f3 are multiplied with 5, 52, and 53, respectively.
Fig. 7 plots approximated POFs of the median and worst IGD
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Fig. 7: Approximated POFs for scaled WFG5. Top: the median
approximation; bottom: the worst approximation.

values over 31 runs, showing that the simple normalization
method used in SPEA/R can deal with scaling objectives
and the new diversity-first-and-convergence-second strategy
is capable of providing a uniform distribution of solutions.
NSGA-III, however, struggles to solve the scaled WFG5. In the
median case of NSGA-III, the intercept-based normalization
is able to diversify points over the whole POF but the niche
preservation cannot provide a good distribution. In the worst
case, NSGA-III drives the majority of points toward the f1f3
plane, and misses a large part of the POF. One reason for this
is that NSGA-III tends to preserve members in higher fronts
that have better convergence, and less-converged isolated ones
in lower fronts are likely to leave unconsidered, leading to
poor diversity during the search. Therefore, NSGA-III cannot
compete with SPEA/R in terms of diversity.

C. Influence of Fitness Assignment and Niche Preservation

Although Section III-C has revealed that good population
diversity contributes to the performance of SPEA/R, in this
subsection we try to unveil more reasons behind the high
performance of SPEA/R.

Fitness assignment and diversity preservation are the core
of SPEA/R, which control the balance between convergence
and diversity. To understand why our strategy yields high
performance, we further design three other SPEA/R variants
that use different strategies. The first one, called SPEA/R-
A, removes global fitness from Eq. (9) when calculating
individuals’ fitness. Instead of removing global fitness, the
second variant, i.e., SPEA/R-B, removes local fitness, so an
individual’s final fitness is composed of global fitness and den-
sity. The third variant (named SPEA/R-C) allows individuals
with the highest fitness to enter into the next generation in
environmental selection. Thus, SPEA/R-A favours diversity
whereas SPEA/R-C favours convergence, and SPEA/R-B does
not consider local convergence. The variants are compared
with the original SPEA/R on 7 MOP problems and 9 WFG
problems with 2, 3, 5, 8, and 12 objectives. The HV results
obtained by each algorithm for a total of 52 instances are

TABLE V: Statistical difference between SPEA/R and two
variants

Sign SPEA/R-A SPEA/R-B SPEA/R-C

SPEA/R vs.
B 12 4 51
E 40 47 1
W 0 1 0
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Fig. 8: The IGD metric against the number of generations for
two instances: SPEA/R (solid); SPEA/R-A (dashed); SPEA/R-
B (dotted).

presented in our supplementary material, and only statistical
testing result is given in Table V, which is based on the
Wilcoxon signed-rank test [45] at the 0.05 significance level
with Bonferroni correction. In the table, the signs ‘B’, ’E’,
and ‘W’ represent SPEA/R is significantly better, equivalent
to, and worse than the compared variant, respectively.

It is clear that, SPEA/R generally performs better than the
other variants. Specifically, SPEA/R outperforms SPEA/R-
A in a number of cases, indicating that the use of global
fitness is a good choice for SPEA/R in some situations. The
comparison between SPEA/R and SPEA/R-B shows that the
use of local fitness does not make a big difference but may
help SPEA/R achieve slightly better performance for a few
instances. For SPEA/R-C, the lack of diversity maintenance
induces a significant lag behind SPEA/R. This observation
further confirms that the high performance of SPEA/R is
mainly due to sound diversity preservation.

Since SPEA/R, SPEA/R-A, and SPEA/R-B differ only in
fitness assignment, one would wonder why SPEA/R works
better (though not significantly better in most cases) than
the other two variants. To investigate this, we plot the mean
IGD curves of these variants against the first 300 generations
on MOP3 and 2-objective WFG4, as shown in Fig. 8. It
can be observed that SPEA/R converges fastest, followed
by SPEA/R-B, and SPEA/R-A ranks last. SPEA/R is better
than SPEA/R-A because adding local fitness can strengthen
discrimination between individuals so that more-converged
individuals can be preserved. In contrast, without the use
of global fitness, SPEA/R-A converges relatively slower than
SPEA/R and SPEA/R-B. This illustrates that the joint use of
global fitness and local fitness can speed up the search process,
although not very significantly. However, we should point
out that there is no much difference between SPEA/R and
SPEA/R-B in high-dimensional problems. This is because the
local fitness value will be zero when the majority of individuals
are nondominated in high dimensions. In other words, SPEA/R
may degenerate to SPEA/R-B in this situation.
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TABLE VI: Mean and standard deviation HV values obtained by SPEA/R with different K values for four WFG problems

Prob. M K=2 K=5 K=10 K=20 K=40 K=50

WFG5

2 7.0444E-1(2.6807E-3) 7.0331E-1(1.4893E-3) 7.0290E-1(1.5121E-3) 7.1227E-1(9.3626E-4) 7.0240E-1(1.0190E-3) 7.0225E-1(1.2918E-3)
3 8.1491E-1(2.2212E-3) 8.1506E-1(2.5168E-3) 8.1509E-1(2.6994E-3) 8.2437E-1(2.0573E-3) 8.1398E-1(1.3143E-3) 8.1376E-1(1.1227E-3)
5 8.7474E-1(2.0417E-3) 8.7699E-1(2.8228E-3) 8.7754E-1(1.4904E-3) 8.8792E-1(1.1292E-3) 8.7778E-1(1.3177E-3) 8.7786E-1(1.0863E-3)
8 8.8822E-1(8.3131E-3) 8.9728E-1(3.1274E-3) 8.9833E-1(1.2579E-2) 9.0023E-1(2.9488E-3) 9.0064E-1(3.1272E-3) 8.9896E-1(3.0760E-3)
12 8.2542E-1(4.0708E-2) 8.3170E-1(6.4925E-2) 8.6648E-1(9.6071E-2) 9.0236E-1(6.6030E-3) 9.0357E-1(5.3041E-3) 8.9903E-1(1.3462E-2)

WFG6

2 7.0956E-1(7.4317E-3) 7.1207E-1(4.9637E-3) 7.1049E-1(6.8942E-3) 7.1001E-1(6.5120E-3) 7.1125E-1(4.4444E-3) 7.1112E-1(6.4365E-3)
3 8.1414E-1(8.6380E-3) 8.1048E-1(6.0997E-3) 8.1501E-1(5.5185E-3) 8.2552E-1(6.3065E-3) 8.1704E-1(6.4877E-3) 8.1612E-1(6.9906E-3)
5 8.7020E-1(1.2008E-2) 8.7366E-1(1.2462E-2) 8.7589E-1(8.0459E-3) 8.9930E-1(7.7577E-3) 8.7429E-1(1.3280E-2) 8.7756E-1(8.3509E-3)
8 8.8848E-1(2.9622E-2) 8.9990E-1(1.9014E-2) 9.0585E-1(1.0637E-2) 9.2855E-1(1.5045E-2) 9.0146E-1(1.2872E-2) 9.0041E-1(1.2033E-2)
12 8.6720E-1(8.0397E-2) 8.8930E-1(4.9023E-2) 8.9676E-1(5.2199E-3) 9.1604E-1(1.2921E-2) 9.0072E-1(2.5975E-2) 8.9359E-1(6.1651E-2)

WFG7

2 7.3554E-1(5.8256E-4) 7.3573E-1(4.3877E-4) 7.3570E-1(4.2235E-4) 7.3615E-1(1.1625E-3) 7.3531E-1(5.4513E-4) 7.3455E-1(1.5055E-3)
3 8.5109E-1(3.6231E-4) 8.5135E-1(2.8815E-4) 8.5120E-1(3.8447E-4) 8.5171E-1(3.4081E-4) 8.5022E-1(3.7511E-4) 8.5007E-1(3.9649E-4)
5 9.2148E-1(1.0175E-3) 9.2385E-1(5.7867E-4) 9.2498E-1(6.6708E-4) 9.2528E-1(6.1088E-4) 9.2504E-1(8.4886E-4) 9.2451E-1(1.7558E-3)
8 8.1636E-1(7.3633E-2) 8.8675E-1(5.2499E-2) 9.1107E-1(6.1033E-2) 9.5110E-1(1.7669E-2) 9.0279E-1(3.2266E-2) 8.4598E-1(6.7261E-2)
12 9.0203E-1(1.1885E-1) 9.2156E-1(8.3763E-2) 9.3326E-1(3.5592E-2) 9.4407E-1(9.1515E-3) 8.8898E-1(8.1680E-2) 8.5109E-1(1.4778E-1)

WFG8

2 6.9842E-1(2.5016E-3) 7.0146E-1(3.4153E-3) 7.0138E-1(3.2326E-3) 7.0318E-1(3.3615E-3) 7.0262E-1(3.5139E-3) 7.0264E-1(3.2564E-3)
3 7.9341E-1(3.4538E-3) 8.0085E-1(6.2528E-3) 8.0478E-1(7.1091E-3) 8.0651E-1(5.3416E-3) 8.0817E-1(5.9836E-3) 8.0802E-1(5.7856E-3)
5 8.0213E-1(3.0860E-3) 8.0994E-1(3.9769E-3) 8.2573E-1(2.0662E-2) 8.5983E-1(1.8504E-2) 8.5576E-1(3.6934E-2) 8.4240E-1(1.7857E-2)
8 8.6003E-1(6.8351E-2) 8.6155E-1(4.5106E-2) 8.7114E-1(4.3606E-2) 8.8805E-1(3.8120E-2) 8.6770E-1(5.7081E-2) 8.5679E-1(6.3412E-2)
12 8.4546E-1(5.2716E-2) 8.5492E-1(2.0422E-1) 8.5888E-1(2.2243E-1) 8.7084E-1(2.2243E-1) 8.5445E-1(1.6750E-1) 7.4837E-1(1.6586E-1)

D. Influence of Restricted Mating

Restricted mating selection is somewhat similar to the
concept of neighbourhood used in MOEA/D, in which close
parents are likely to generate good offspring. It has a key
parameter K , i.e., the number of parent candidates, and the
influence of this parameter is investigated on four WFG
problems. Table VI reports the HV values obtained by SPEA/R
with different settings of K . It can be observed that, K = 20
(10%–20% of population size) yields better results than the
other settings for all the cases except the 8- and 12-objective
WFG5 and the 2-objective WFG6. Particularly, for many-
objective problems, e.g., the 8- and 12-objective cases, there
is a noticeable improvement on the HV metric when K is
increased from 2 to 20. This means proper restricted mating
can benefit population reproduction, thereby promoting algo-
rithms’ performance for many-objective optimization.

The above experiment has shown that proper restricted
mating is good for population reproduction. However, we
should point out that, restricted mating can be used only when
population diversity is well maintained. This is because, if
population individuals are not well distributed, then restricted
mating can cause overexploitation in overcrowded regions
so that isolated regions may be left under-explored or even
unexplored, resulting in a further deterioration of population
diversity. This has been illustrated in Section V-C, where the
overlook of diversity maintenance makes SPEA/R-C signifi-
cantly worse than SPEA/R although restricted mating has been
employed there.

E. Peformance of SPEA/R on Problems with More Objectives

SPEA/R has the advantage of population diversity main-
tenance so that it can handle high-dimensional problems. To
further investigate whether this advantage can deal with prob-
lems with more objectives, we tested SPEA/R on WFG4 with
20 and 40 objectives. This means the difficulty of the problem
is massively increased as nearly all population members are
nondominated with respect to each other. The population size

was set to 280 and 560 for 20 and 40 objectives, respectively.
Due to the increase of the difficulty of the problem, SPEA/R
should be given more computational resources. Hence, the
maximum number of generations was set to 3000 and 5000
for 20 and 40 objectives, respectively.

Fig. 9 shows the normalized parallel coordinates of final
solutions obtained by SPEA/R for two instances. Clearly, on
both 20 and 40 objectives, SPEA/R can still obtain a set
of diverse solutions in the entire range of the POF. Thus,
the proposed diversity-first-and-convergence-second selection
strategy in SPEA/R is very promising for solving many-
objective problems.

F. More Discussions

It has been well recognized that convergence and diversity
are two main but hard-to-balance goals in designing MOEAs.
Any bias toward one goal will inevitably aggravate the other.
In many-objective optimization the balance between them is
still of great importance. However, when handling MaOPs,
most MOEAs inherit elitist preservation from their counter-
parts of low-dimensional optimization that emphasizes non-
dominated solutions in the population, resulting in very little
room left for diversity maintenance. Even if these MOEAs
did not intentionally emphasize convergence, they could not
elude the fact that an increasingly large fraction of population
becomes nondominated with an increase in the number of
objectives. In other words, they perform environmental se-
lection in a convergence-first-and-diversity-second manner. As
a result, when the MOEAs are applied to high-dimensional
optimization, there will be a large number of nondominated
individuals after the convergence-first selection, and diversity
preservation will be performed only on the nondominated
individuals. Correspondingly, some regions occupied by dom-
inated individuals will be scarcely explored, and diversity
preservation becomes of limited use in this case. In con-
trast, SPEA/R adopts a diversity-first-and-convergence-second
strategy to perform environmental selection, at an attempt to
maximize population diversity and strengthen exploitation in
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Fig. 9: Parallel coordinates of final solutions obtained by SPEA/R for WFG with 20 (a) and 40 (b) objectives.

less-converged regions during the search. Our experiments
have shown its promise for both multi- and many-objective
optimization.

However, we may wonder why SPEA/R can work well on
problems with over 12 objectives, where nearly all individuals
(over 95% of population) are nondominated [23]. This means,
in this situation, the diversity-first-and-convergence-second
strategy in SPEA/R has no advantage over other MOEAs in
diversity preservation because there is hardly any region that
can be occupied by very few dominated individuals. There
is no doubt that, when population is randomly generated,
the fraction of dominated individuals is close to zero for
10 objectives and over [23]. But, what if the population is
a combination of parent and offspring populations, which is
the case with MOEAs? To investigate this, we consider the
search behaviour of SPEA/R on the 12-objective WFG5 over
2000 generations. In every generation, SPEA/R distributes a
combined population toward Hk

M subregions (which equals the
total number of reference directions) of the objective space,
and the number (Nd) of subregions in which only dominated
solutions reside is recorded. Fig. 10 shows the relative fre-
quency of different Nd values over 2000 generations. Clearly,
in the majority of generations dominated solutions do not
solely occupy any subregions. In this situation, dominated
solutions make little contribution to diversity as nondominated
solutions covers all subregions of the evolving population.
However, there are also over 20% generations in which some
subregions are occupied by dominated but not nondominated
solutions. In this case, dominated solutions make a difference
to population diversity.

Additionally, we also compute the percentage of dominated
solutions in the combined population of every generation of
SPEA/R for a single run, as shown in Fig. 11. It can be ob-
served from the figure that, there is still a noticeable proportion
of dominated solutions in the combined population before the
population converges to the POF. All these observations clearly
confirm that preservation of dominated solutions for diversity
promotion through the diversity-first-and-convergence-second
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Fig. 10: The relative frequency of the number of subregions
occupied only by dominated solutions.
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generation of SPEA/R for 12-objective WFG5.
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strategy is still beneficial to SPEA/R when handing high-
dimensional problems.

On the other hand, Fig. 11 can also be used to explain
why the compared MOEAs in this paper cannot compete with
SPEA/R. As shown in this figure, there are at least 50% non-
dominated solutions in the combined population nearly every
generation. Since HypE, MOEA/D, PICEA-g, NSGA-III, and
SPEA2+SDE all prefer nondominated solutions, there is no
room for them to preserve dominated but diverse solutions
when selecting only half of the combined population for next
generation. As a consequence, regions occupied by dominated
solutions will be left unexplored, which can cause diversity
loss in the population.

The reason why our observation is inconsistent with the
study of [23] in terms of the proportion of dominated solu-
tions is that, the combined population comprises parent and
offspring members, and there is a close relationship between
them. Thus, there are more dominated members than expected.
However, we should be aware that there might be very few
or even no dominated solutions if the number of objectives is
considerably large, e.g., 100. In this case, the diversity-first-
and-convergence-second selection strategy may be of limited
use.

VI. CONCLUSIONS

It has been repeatedly reported that conventional Pareto-
dominance based MOEAs may be unsuitable for many-
objective optimization, although they can successfully solve
two- or three-objective problems. In this paper, we have
suggested a reference-direction based method to revive an
early SPEA algorithm for handling both MOPs and MaOPs.
Through incorporating a set of predefined reference direc-
tions, the proposed algorithm, i.e., SPEA/R, partitions the
objective space into a number of subregions of interest, and
individuals in each subregion are guided toward predefined
search directions. Unlike most existing MOEAs prefering
nondominatd solutions, SPEA/R adopts a diversity-first-and-
convergence-second selection strategy, which can increase the
selection pressure for many-objective optimization where a
large fraction of population is nondominated. SPEA/R also
employs a restricted mating scheme to improve reproduction
efficiency. Besides, the proposed framework has significantly
reduced the computational effort of SPEA-based methods,
providing the overall computational complexity bounded by
O(MN2).

Our experimental study has demonstrated the efficacy of
SPEA/R on a number of MOP and WFG test problems with
2 to 40 objectives and various optimization difficulties. A
fair comparison with several state-of-the-art MOEAs suggests
that SPEA/R is very comparative for both multi- and many-
objective optimization. This implies that giving high priority
to diversity over convergence can be another effective way to
handle many-objective optimization.

Although SPEA/R has provided encouraging performance
on the test problems considered in this paper, it needs to be
examined on a wider range of problems (e.g., complicated
POS and POF shapes). Also, as the research on many-objective

optimization is still in its infancy, there are some open issues
remaining to be solved, such as the computationally expensive
calculation of performance metrics and visualization of a
higher-dimensional trade-off front. Therefore, these should be
very interesting topics for our future work.
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This is the supplementary material to the paper entitled “A
Strength Pareto Evolutionary Algorithm Based on Reference
Direction for Multi-objective and Many-objective Optimiza-
tion”, written by Shouyong Jiang and Shengxiang Yang. This
material provides a detailed description of a multi-objective
test suite and and a recombination operator used in the
paper. After that, there are discussions on the performance
of reference direction set used in the proposed algorithm,
followed by supplementary results for the MOP test suite and
detailed comparisons between different fitness assignments
and niche preservation schemes. Some additional figures of
parallel coordinates indicating algorithms’ final performance
on many-objective optimization are also presented in this
material.

VII. MOP TEST SUITE

• MOP1
f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))(1 −√
x1)

where g(x) = 2 sin(πx1)
∑n

i=2(−0.9t2i + |ti|0.6), ti =
xi − sin(0.5πx1), i = 2, . . . , n. The search space is
[0, 1]n, n = 10. Its POS is {x ∈ R(n−1)|xi =
sin(0.5πx1), n = 2, . . . , n, x1 ∈ [0, 1]}. Its POF is
{(f1, f2)|f2 = 1−√

f1, f1 ∈ [0, 1]}.
• MOP2

f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))(1 − x2
1)

where g(x) = 10 sin(πx1)
∑n

i=2
|ti|

1+exp(5|ti|) , ti = xi −
sin(0.5πx1), i = 2, . . . , n. The search space is [0, 1]n,
n = 10. Its POS is the same as that of MOP1. Its POF
is {(f1, f2)|f2 = 1− f2

1 , f1 ∈ [0, 1]}.
• MOP3

f1(x) = (1 + g(x)) cos(0.5πx1)
f2(x) = (1 + g(x)) sin(0.5πx1)

where g(x) = 10 sin(πx1)
∑n

i=2
|ti|

1+exp(5|ti|) , ti = xi −
sin(0.5πx1), i = 2, . . . , n. The search space is [0, 1]n,
n = 10. Its POS is the same as that of MOP1. Its POF
is {(f1, f2)|f2 =

√
1− f2

1 , f1 ∈ [0, 1]}.
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School of Computer Science and Informatics, De Montfort University, The
Gateway, Leicester LE1 9BH, U.K. (email: shouyong.jiang@email.dmu.ac.uk,
syang@dmu.ac.uk).

• MOP4

f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))(1 −√
x1 cos

2(2πx1))

where g(x) = 10 sin(πx1)
∑n

i=2
|ti|

1+exp(5|ti|) , ti = xi −
sin(0.5πx1), i = 2, . . . , n. The search space is [0, 1]n,
n = 10. Its POS is the same as that of MOP1. Its POF
is {(f1, f2)|f2 = 1−√

f1 cos
2(2πf1), f1 ∈ [0, 1]}.

• MOP5
f1(x) = (1 + g(x))x1

f2(x) = (1 + g(x))(1 −√
x1)

where g(x) = 2 cos(πx1)
∑n

i=2(−0.9t2i + |ti|0.6), ti =
xi − sin(0.5πx1), i = 2, . . . , n. The search space is
[0, 1]n, n = 10. Its POS is the same as that of MOP1. Its
POF is a part of {(f1, f2)|f2 = 1−√

f1, f1 ∈ [0, 1]}.
• MOP6

f1(x) = (1 + g(x))x1x2

f2(x) = (1 + g(x))x1(1− x2)
f3(x) = (1 + g(x))(1 − x1)

where g(x) = 2 sin(πx1)
∑n

i=3(−0.9t2i + |ti|0.6),
ti = xi − x1x2, i = 3, . . . , n. The search space
is [0, 1]n, n = 10. Its POS is {x ∈ R(n−2)|xi =
sin(0.5πx1), i = 3, . . . , n, xj ∈ [0, 1], j = 1, 2}. Its POF
is {(f1, f2, f3)|f1 + f2 + f3 = 1, fi ∈ [0, 1], i = 1, 2, 3}.

• MOP7

f1(x) = (1 + g(x)) cos(0.5πx1) cos(0.5πx2)
f2(x) = (1 + g(x)) cos(0.5πx1) sin(0.5πx2)
f2(x) = (1 + g(x)) sin(0.5πx1)

where g(x) = 2 sin(πx1)
∑n

i=3(−0.9t2i + |ti|0.6),
ti = xi − x1x2, i = 3, . . . , n. The search space
is [0, 1]n, n = 10. Its POS is {x ∈ R(n−2)|xi =
sin(0.5πx1), n = 3, . . . , n, xj ∈ [0, 1], j = 1, 2}. Its POF
is {(f1, f2, f3)|f2

1 + f2
2 + f2

3 = 1, fi ∈ [0, 1], i = 1, 2, 3}.

VIII. LIU AND LI’S RECOMBINATION OPERATOR

A. Crossover

Suppose xi and xj are mating parents, a child y can be
generated by

y = xi + rc(xi − xj) (1)

with

rc = (2rnd− 1)(1− rnd−(1−g/Mg)0.7 ) (2)
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TABLE VII
POPULATION SIZE SETTINGS FOR SLD AND K-LAYER FOR DIFFERENT NUMBERS OF OBJECTIVES

M SLD k-layer

3 45 105 231 528 43 106 232 511
4 56 120 286 560 57 109 261 541
5 70 126 210 495 71 101 221 451
6 56 126 252 462 55 121 211 463
7 28 84 210 462 36 99 190 456
8 36 120 240 660 41 113 281 521
9 45 165 210 495 46 127 244 487
10 55 110 230 440 51 141 201 441
15 30 135 240 680 31 136 211 526

TABLE VIII
CENTRED L2-DISCREPANCY VALUES OF SLD AND K-LAYER FOR DIFFERENT POPULATION SIZES

M SLD k-layer

3 1.13E-01 1.11E-01 1.10E-01 1.11E-01 1.12E-01 1.12E-01 1.12E-01 1.12E-01
4 4.87E-01 5.17E-01 5.52E-01 5.89E-01 4.20E-01 4.14E-01 4.14E-01 4.14E-01
5 1.18E+00 1.28E+00 1.32E+00 1.43E+00 9.93E-01 9.79E-01 9.78E-01 9.78E-01
6 2.39E+00 2.44E+00 2.70E+00 2.80E+00 1.92E+00 1.92E+00 1.93E+00 1.93E+00
7 3.78E+00 4.43E+00 4.58E+00 5.05E+00 3.61E+00 3.50E+00 3.47E+00 3.45E+00
8 6.46E+00 7.72E+00 5.46E+00 6.21E+00 6.09E+00 5.92E+00 5.84E+00 5.86E+00
9 1.26E+01 1.27E+01 1.08E+01 1.43E+01 9.91E+00 9.67E+00 9.61E+00 9.55E+00

10 1.98E+01 1.45E+01 1.89E+01 1.36E+01 1.58E+01 1.54E+01 1.52E+01 1.53E+01
15 1.58E+02 1.62E+02 1.31E+02 1.61E+02 1.39E+02 1.32E+02 1.33E+02 1.32E+02

where rnd is a random number in [0,1]. g and Mg are the
current generation and the maximum number of generations,
respectively. After that, y is repaired by

yk =

⎧⎨
⎩

yk if ak ≤ ȳk ≤ bk
ak +

rnd
2 (yk − ak) if ȳk < ak

bk +
rnd
2 (bk − ak) if ȳk > bk

(3)

where yk is the k-th component of y, and ak and bk are the
lower and upper bounds of the k-th variable.

B. Mutation

Each component of y is mutated by

yk = yk + rm(bk − ak) (4)

with

rm = 0.5(rnd− 0.5)(1− rnd−(1−g/Mg)0.7 ) (5)

After mutation, y is repaired by Eq. (3).

IX. DISCUSSIONS ON REFERENCE DIRECTION SET

A. Uniformity

Unlike the simplex-lattice design (SLD) method used in
MOEA/D and NSGA-III, our k-layer method generates ref-
erence direction set from the subsimplex’s point of view. As
a result, the k-layer method can give more options for setting
population size when the number of objectives is very large.
Here, we investigate the uniformity of reference direction set
generated by different methods. Since the coupling between
population size and the number of objectives (M ) exists in
both SLD and the k-layer method, it is very unlikely to
generate the same population size using these two methods. A
feasible way to compare the uniformity between SLD and the

k-layer method is to generate similar population size. Also, we
consider four levels of population size, that is, population size
approximately equals 50, 100, 250, and 500, which is shown
in Table VII. Note that, SLD can generate each considered
population size of points by choosing different settings for
the two-layered method of NSGA-III. The most widely used
discrepancy measure, i.e., centred L2-discrepancy (CD2) is
adopted to evaluate the uniformity of a reference direction
set, and the smaller CD2 is, the more uniform a reference
direction set will be.

Table VIII presents the CD2 values of SLD and k-layers
on different population sizes, where the best value for each
population size is marked in boldface. It can be observed that,
in the 3-objective case, SLD has slightly better distribution
than the k-layer method, whereas for M > 3, the k-layer
method gives much better CD2 values than SLD in most cases.
It is understandable that the k-layer method generates more
uniform reference direction set in higher-dimension cases,
because it decomposes the whole simplex into M subsim-
plexes, and each subsimplex can get a number of uniformly-
distributed points. In contrast, SLD use a two-layered structure
to distribute points in high-dimensional cases. It generates
points only on the layers, and cannot generate intermediate or
near intermediate points on the simplex. So, the distribution
of SLD is not very uniform in high-dimensional cases.

The k-layer method is just an example of using subsim-
plexes to design the reference direction set. The whole simplex
consists of M subsimplexes for the M -objective case, and each
subsimplex is a two-dimensional simplex. So, it is easier to
distributing points on these subsimplexes than on the whole
M -dimensional simplex. However, it is far from being satis-
fying because there is still a coupling between the population
size and the number of objectives. Subsimplex-based design
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Fig. 12. Boxplots of the IGD results obtained by algorithms using the SLD and k-layer approaches for the 3-objective WFG4 instance.

methods are promising for reducing the coupling, and more
work is required to generate an arbitrary population size free
from the influence of the number of objectives. It should be
noted that a uniformly-distributed reference direction set does
not necessarily produce a uniform distribution of solutions on
the Pareto-optimal front (POF). This is because the task to
uniform a reference set on the simplex is not equivalent to
that to well distribute solutions on the POF that has various
geometries.

B. Influence on Search Performance

Next, we analyze the search performance of algorithms with
different reference direction generation methods, i.e., the SLD
method and the k-layer method. The two methods are tested
on MOEA/D-ACD and SPEA/R. Since both SLD and k-layer
methods have a close coupling with population size, it is
desirable to choose similar population sizes to make a fair
comparison between these two methods. For this reason, we
use a population size of 105 and 106 for SLD and k-layer,
respectively, in 3-objective cases, which has been shown in
Table VII.

The influence of SLD and k-layer is examined on 3-
objective WFG4, and the IGD results obtained MOEA/D-
ACD and SPEA/R are presented in Fig. 12. Note that, 5050
uniformly-sampled points from the true POF of the 3-objective
WFG4 are used to calculate the IGD metric. Two interesting
observations can be obtained from the figure. First, SPEA/R
outperforms MOEA/D-ACD in terms of IGD, regardless of
the reference direction generation methods. Second, for both
algorithms, the k-layer method helps yield better IGD values
than the SLD method. Thus, the proposed reference direction
generation method is very effective to guide the search toward
the 3-dimensional POF.

Afterwards, we examine the effectiveness of the k-layer
method on high-dimensional cases. To do this, we compare
the k-layer method with SLD on 8-objective WFG4, and the
population size of SPEA/R is set to 161. Note that, here
SLD represents the two-layered approach proposed in NSGA-
III. Fig. 13 presents boxplots of the IGD values obtained

SLD k-layer
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Fig. 13. Boxplots of the IGD results obtained by SPEA/R using the SLD
and k-layer approaches for the 8-objective WFG4 instance.

SPEA/R with different reference direction generation methods,
showing the k-layer method help achieve better IGD values
than SLD. Additionally, the normalized parallel coordinate
plot of SPEA/D with the two different methods is displayed
in Fig. 14. We can observe from the figure that both methods
are able to provide a set of solutions residing in the entire
POF. While the k-layer method covers well the POF, SLD
misses a small part of the POF, e.g., there is no solution in the
region where fi ∈ [0.1, 0.4] for all i. Therefore, the proposed
reference direction generation method can guide the search
well in high-dimensional cases.

X. SUPPLEMENTARY RESULTS ON THE MOP TEST SUITE

To study the evolution difference among SPEA/R,
MOEA/D-ACD and MOEA/D-M2M, we provide the box-
plot of the obtained HV values after different number of
generations for each test MOP problem, which is shown
in Fig. 15. It is clear to see that the HV value roughly
increases monotonically with the number of generations while
the variance of the HV decreases. In MOP1, MOEA/D-ACD
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Fig. 14. Parallel coordinates of final solutions obtained by different reference direction generation methods for the 8-objective WFG4 instance.

performs better than the others at the early stage (before the
1000th generation), but the difference between the algorithms
becomes small when the generation proceeds. In MOP2 and
MOP4, SPEA/R performs the best after 500 generations, as
indicated by the variance of HV. The three algorithms perform
similarly on MOP5, MOP6, and MOP7, but SPEA/R seems
to have less outliers than MOEA/D-M2M and MOEA/D-ACD
during the evolution, particularly on MOP6 and MOP7. The
boxplots of the HV clearly show that SPEA/R can evolve in
a good behavior and achieve competitive performance against
the other algorithms.

XI. SUPPLEMENTARY RESULTS ON THE INFLUENCE OF

FITNESS ASSIGNMENT AND NICHE PRESERVATION

Table IX provides some supplementary results of four
SPEA/R variants for the WFG and MOP test suites in terms of
the HV metric. Note that, the reported HV values for the WFG
instances have been normalized whereas those for the MOP
instances do not. The reference point for the computation of
HV remains the same as in Section III and Section IV for
the WFG and MOP test suites, respectively. The Wilcoxon
signed-rank test at the 0.05 significance level with Bonferroni
correction is used to clarify the difference between the original
SPEA/R and the other compared variants.

We can observe from the table that, generally, SPEA/R
obtains the best HV values on the majority of the 52
test instances. Specifically, SPEA/R outperforms SPEA/R-
A, SPEA/R-B, and SPEA/R-C in 12, 4, and 51 out of 52
instances, respectively. Compared with SPEA/R, SPEA/R-A
loses on some instances, indicating that the use of global
fitness is helpful. In most cases, SPEA/R performs similarly to
SPEA/R-B. This means that the use of local fitness does not
significantly enhance the final performance of SPEA/R. On the
other hand, there is a significant difference between SPEA/R
and SPEA/R-C. This shows that the lack of proper diversity
maintenance is detrimental to the algorithm’s performance.

The comparison between SPEA/R and the other vari-
ants clearly demonstrates that the proposed diversity-first-
and-convergence-second environmental selection strategy con-

tributes most to solving various problems considered in this
paper. But, this does not mean that fitness assignment is not
important. The outperformance of SPEA/R over SPEA/R-A
illustrates that proper use of fitness assignment can boost
algorithms’ performance. Therefore, we can conclude that both
diversity and convergence are of great importance to SPEA/R,
but diversity outweighs convergence in our study.

XII. SOLUTION REPRESENTATION FOR MANY-OBJECTIVE

PROBLEMS

To further show the performance of different algorithms on
many-objective optimization, we graphically plot the parallel
coordinates of final solutions obtained by each algorithm
for 12-objective WFG5 and WFG6 in Figs. 16 and 17,
respectively. For WFG5, SPEA2+SDE and SPEA/R are the
best performers in terms of diversity, but the former does
not cover as well as the latter. For WFG6, NSGA-III and
SPEA/R perform similarly, and SPEA2+SDE also achieves
very diverse solutions, but its coverage is again far from
being satisfying. The figures clearly show that SPEA/R is
very capable of balancing diversity and convergence for many-
objective optimization.
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Fig. 15. Boxplots of obtained HV values at different search stages. Left column: SPEA/R; middle column: MOEA/D-M2M; right column: MOEA/D-ACD.
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TABLE IX
MEAN AND STAND DEVIATION HV VALUES OBTAINED BY FOUR SPEA/R VARIANTS ON A TOTAL OF 52 TEST INSTANCES

Prob. M SPEA/R SPEA/R-A SPEA/R-B SPEA/R-C

WFG1

2 6.0736E-1(5.9395E-3) 6.0544E-1(3.9530E-3)† 6.0978E-1(5.3469E-3)† 5.0624E-1(3.1928E-2)‡
3 6.2420E-1(6.0584E-3) 6.2393E-1(6.2900E-3)† 6.2529E-1(4.8780E-3)† 3.7656E-1(7.3531E-2)‡
5 5.7919E-1(5.4070E-3) 5.7709E-1(4.4688E-3)‡ 5.8382E-1(1.2427E-2) 4.0328E-1(8.2468E-2)‡
8 6.2128E-1(7.8831E-2) 5.9634E-1(9.2591E-2)‡ 5.1144E-1(8.2269E-2)† 3.3294E-1(7.1250E-2)‡

12 4.2884E-1(5.9670E-2) 3.3142E-1(5.9896E-2)† 3.1374E-1(1.2585E-2)† 3.0224E-1(6.4692E-2)‡

WFG2

2 8.3092E-1(2.9447E-2) 8.3745E-1(2.4617E-2)† 8.3397E-1(2.7915E-2)† 6.4052E-1(1.3187E-1)‡
3 9.4106E-1(6.0781E-2) 9.4029E-1(6.1166E-2)† 9.4759E-1(5.6287E-2)† 3.9638E-1(1.4135E-1)‡
5 9.8674E-1(3.7587E-2) 9.4430E-1(7.9392E-2)‡ 9.8694E-1(3.7738E-2)† 3.0529E-1(9.9552E-2)‡
8 9.9759E-1(6.6128E-4) 9.8321E-1(7.8581E-2)‡ 9.9127E-1(9.0229E-2)† 2.9570E-1(1.0492E-1)†

12 9.8832E-1(9.2631E-2) 8.8805E-1(9.2739E-2)† 9.8023E-1(5.6782E-2)‡ 2.8799E-1(1.8007E-1)‡

WFG3

2 8.2945E-1(1.3184E-3) 8.2688E-1(1.3610E-3)† 8.2767E-1(1.6579E-3)† 6.2481E-1(1.2766E-1)‡
3 7.7947E-1(8.0418E-3) 7.7253E-1(8.6399E-3)† 7.7651E-1(1.0792E-2)† 3.5801E-1(1.1030E-1)‡
5 6.8696E-1(1.1909E-1) 3.3371E-1(1.1242E-1)† 3.3844E-1(9.9643E-2)† 2.6090E-1(9.0781E-2)‡
8 4.9757E-1(4.4357E-2) 2.9351E-1(5.1645E-2)† 2.6538E-1(6.2345E-2)† 2.1330E-1(3.4329E-2)‡

12 4.8913E-1(4.4723E-2) 4.7754E-1(4.6565E-2)† 4.7406E-1(5.4434E-2)† 2.0211E-1(7.7641E-3)‡

WFG4

2 7.3497E-1(6.0901E-4) 7.3488E-1(7.1729E-4)† 7.3517E-1(4.5024E-4)† 6.8561E-1(1.6689E-2)‡
3 8.5842E-1(9.0221E-4) 8.4828E-1(7.1718E-4)† 8.4854E-1(5.9400E-4)† 2.6268E-1(1.6449E-2)‡
5 9.2169E-1(1.2998E-3) 9.2103E-1(9.0865E-4)† 9.2190E-1(1.0292E-3)† 1.6953E-1(7.4838E-3)‡
8 9.5797E-1(3.9059E-3) 9.5641E-1(4.6414E-3)† 9.5349E-1(1.5037E-2)† 1.1496E-1(9.1398E-3)‡

12 9.1209E-1(7.8544E-2) 8.7905E-1(1.1934E-1)‡ 9.0516E-1(3.2617E-2)† 7.7403E-2(2.4276E-3)‡

WFG5

2 7.1227E-1(9.3626E-4) 7.0231E-1(1.3487E-3)† 7.0263E-1(7.5781E-4)† 3.4370E-1(6.8752E-2)‡
3 8.2437E-1(2.0573E-3) 8.1446E-1(1.8781E-3)† 8.1405E-1(1.5404E-3)† 2.8645E-1(5.6845E-2)‡
5 8.8792E-1(1.1292E-3) 8.7773E-1(1.6310E-3)† 8.7815E-1(1.6021E-3)† 1.5839E-1(1.0153E-2)‡
8 9.0023E-1(2.9488E-3) 9.0208E-1(3.1050E-3)† 9.0094E-1(3.5224E-3)† 1.1891E-1(1.4041E-2)‡

12 9.0236E-1(6.6030E-3) 9.0210E-1(8.5838E-3)† 8.9487E-1(2.6142E-2)† 8.3108E-2(1.6591E-2)‡

WFG6

2 7.1001E-1(6.5120E-3) 7.1076E-1(5.5471E-3)† 7.1264E-1(6.1166E-3)† 6.3429E-1(4.0134E-2)‡
3 8.2552E-1(6.3065E-3) 8.1690E-1(5.5111E-3)† 8.1921E-1(7.6680E-3)† 2.8573E-1(6.0441E-2)‡
5 8.9930E-1(7.7577E-3) 8.7553E-1(1.0191E-2)‡ 8.7243E-1(1.1251E-2)† 1.9397E-1(3.3503E-2)‡
8 9.2855E-1(1.5045E-2) 9.0496E-1(1.2911E-2)† 8.9911E-1(1.1880E-2)‡ 1.1849E-1(1.3896E-2)‡

12 9.1604E-1(1.2921E-2) 9.1268E-1(1.3382E-2)† 9.0929E-1(1.8871E-2)‡ 4.9899E-2(1.5898E-2)‡

WFG7

2 7.3615E-1(1.1625E-3) 7.3509E-1(8.5502E-4)‡ 7.3520E-1(8.2879E-4)‡ 5.0023E-1(1.3808E-1)‡
3 8.5171E-1(3.4081E-4) 8.5084E-1(3.2037E-4)† 8.5097E-1(4.1257E-4)† 2.6602E-1(2.0120E-2)‡
5 9.2528E-1(6.1088E-4) 9.2461E-1(5.0415E-4)† 9.2505E-1(7.8590E-4)† 1.7514E-1(1.3465E-2)‡
8 9.5110E-1(2.5113E-2) 9.1126E-1(3.7057E-2)‡ 9.4247E-1(3.9013E-2)† 1.0843E-1(1.8472E-2)‡

12 9.4407E-1(9.1515E-3) 9.4246E-1(1.2369E-1)† 9.4488E-1(2.5453E-2)† 8.7954E-2(2.4103E-2)‡

WFG8

2 7.0318E-1(3.3615E-3) 7.0184E-1(3.4096E-3)† 7.0316E-1(3.1633E-3)† 6.1993E-1(4.5839E-2)‡
3 8.0651E-1(5.3416E-3) 8.0749E-1(6.1788E-3)† 8.0554E-1(4.5734E-3)† 3.2625E-1(5.2069E-2)‡
5 8.5983E-1(1.8504E-2) 8.2695E-1(1.1548E-2)† 8.3747E-1(2.4503E-2)† 1.8475E-1(1.3918E-2)‡
8 8.8805E-1(3.8120E-2) 8.8089E-1(4.5522E-2)† 8.8219E-1(4.3581E-2)† 1.1907E-1(1.6269E-2)‡

12 8.7084E-1(2.2243E-1) 8.6295E-1(2.3946E-1)† 8.6963E-1(2.5606E-1)† 6.4869E-2(4.8458E-1)‡

WFG9

2 7.1499E-1(1.4646E-3) 7.1358E-1(9.7322E-4)‡ 7.1404E-1(1.1510E-3)† 5.5476E-1(1.4902E-1)‡
3 8.2240E-1(2.2316E-2) 8.0276E-1(1.7211E-2)† 8.0298E-1(1.7383E-2)† 2.7150E-1(9.4910E-2)‡
5 8.6833E-1(4.2512E-2) 7.7071E-1(3.7155E-2)† 7.9251E-1(3.6113E-2)† 1.8923E-1(8.1110E-2)‡
8 8.1250E-1(4.0473E-2) 7.3161E-1(4.0893E-2)† 7.3690E-1(3.6129E-2)† 1.0369E-1(2.5244E-2)‡

12 7.8937E-1(4.7711E-2) 7.2725E-1(3.3145E-2)‡ 7.8130E-1(4.0693E-2)† 8.0192E-2(2.2657E-3)‡
MOP1 2 3.6546E+0(2.0423E-4) 3.6547E+0(1.9115E-4)† 3.6549E+0(2.4230E-4)† 2.0087E+0(1.1919E-2)‡
MOP2 2 3.3264E+0(5.3229E-5) 3.3264E+0(6.1860E-5)† 3.3264E+0(1.0981E-4)† 2.0000E+0(1.0649E-1)‡
MOP3 2 3.2081E+0(1.1321E-4) 3.2081E+0(1.4979E-4)† 3.2081E+0(7.6603E-5)† 2.0864E+0(2.1585E-1)‡
MOP4 2 3.5109E+0(6.4177E-4) 3.5082E+0(2.4014E-3)† 3.5089E+0(2.7698E-3)† 2.0091E+0(1.4614E-2)‡
MOP5 2 3.6464E+0(8.5389E-4) 3.6448E+0(9.9301E-4)‡ 3.6460E+0(9.3730E-4)† 4.2000E-1(5.5782E-1)‡
MOP6 3 7.7792E+0(7.6112E-3) 7.7700E+0(6.6929E-3)‡ 7.7793E+0(5.4549E-3)† 4.0004E+0(6.8309E-4)‡
MOP7 3 7.3932E+0(7.0526E-3) 7.3930E+0(5.3230E-3)† 7.3930E+0(7.4332E-3)† 4.0000E+0(0.0000E+0)‡

‡ and † indicate SPEA/R performs significantly better than and equivalently to the corresponding algorithm, respectively.
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Fig. 16. Parallel coordinates of final solutions obtained by six algorithms for the 12-objective WFG5 instance.
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Fig. 17. Parallel coordinates of final solutions obtained by six algorithms for the 12-objective WFG6 instance.


