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Abstract 

Tim Watson 2003 

An Investigation into Cooperative Behaviour: 
Altruism and Evolutionary Computing 

This thesis describes how individuals in an evolving population can be en- 
couraged to cooperate. The ability to evolve a cooperating population is of 
obvious benefit to many living things but, to date, no truly cooperative evo- 
lutionary computing systems have been produced, in spite of the fact that 
such systems would be of enormous benefit. 

After an introduction to the research topic, the thesis reviews the relevant 
literature and examines the various mechanisms through which cooperation 
is said to occur. The first significant research contribution of the thesis is a 
demonstration that the standard explanation for the evolution of coopera- 
tion - kin selection - only produces a briefly cooperative population, which 
soon reverts to non-cooperation. The second significant contribution shows 
that cooperation can fail to develop because an evolving system's environ- 
mental rate of change can outpace the speed of adaptation of its population, 
and identifies two techniques to counter this effect, leading to a cooperative 
system that can cope more easily with fast-paced environments. The final 
contribution is a mechanism that overcomes the inherent instability of kin 
selection, allowing systems to evolve cooperation. 

While the work presented here concentrates on evolutionary computing 
systems based on genetic algorithms, some of its findings appear to have 

wider applicability. 
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Chapter 1 

Introduction 

All purposeful behaviour, unless it is centrally controlled, depends upon co- 

operation. From the function of a single cell to the strategic actions of an 

ambitious politician, if it is complex enough to have both purpose and be- 

haviour then its constituent parts, or its environment, will have to cooperate. 

In biological systems cooperation often emerges spontaneously: the har- 

mony between DNA, RNA and protein, and between the nucleus, ribosomes 

and mitochondria within a single human cell; the cooperative societies of 

ants and bees; the caring of parents for their young; the mutualistic rela- 

tionship' between a fungus and a green alga to form lichen. All of these 

forms of cooperation have evolved naturally. In many artificial environments 

a similar evolution occurs: cartels form to protect business profits from com- 

petitive pricing; opposition MPs will pair up to avoid unnecessary voting, 

during the first World war opposing soldiers would often deliberately avoid 
1 Often described less accurately as a symbiotic relationship. Lawrence (1995) defines 

symbiosis as a 'close and usually obligatory association of two organisms of different species 
living together, not necessarily to their mutual benefit; often used exclusively for an asso- 

ciation in which both partners benefit, which is more properly called mutualism. ' 
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injuring each other (Axelrod 1984, pp. 60-61). In spite of this, in almost 

all computing environments, if cooperation is needed it has to be engineered 

in. The development of sophisticated protocols and algorithms for schedul- 

ing, routing, parallel processing and networking takes years of intense effort 

and large amounts of money; yet in many environments it would seem that 

cooperation emerges for free. 

It is easy to see why some simple forms of cooperation have developed. 

In England, we drive on the left. It is said that this is because in earlier 

and more lawless times when a rider passed another on the road it was 

in his interest to have his sword arm between himself and the other rider. 

Everyone cooperated and rode on the left because it was not only best for the 

population as a whole, it was also in the selfish interests of each rider. The 

cooperation still persists today: any driver who tries non-cooperation is likely 

to find his ability to pass his genes on to the next generation dramatically 

reduced. This is trivial cooperation because there is no conflict between the 

best choice for the individual and the best for the group. 

Centralised control is another way to produce cooperative populations: 

the French drive on the right because Napoleon decreed it (Napoleon was 

left-handed). Yet, if centralised control is used to produce anything other 

than the simplest cooperation then the design of the central controller is 

often extremely difficult, if not virtually impossible. 

Without centralised control and when the best for the individual conflicts 

with the best for the group, it is more difficult to see how cooperation can 

emerge and how it is maintained. Two main theories are employed to ex- 

plain the phenomenon: kin selection and reciprocal altruism. Kin selection 
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requires that individuals recognise their close relatives. Reciprocal altruism 

requires that individuals repeatedly interact during their lifetime and learn 

to cooperate. However, it is not always possible, or desirable, to allow re- 

peated interaction within a single generation (for reasons of computational 

efficiency or because an interaction can result in the death of an individual). 

Consequently, a computer system that encourages cooperation, even when 

individuals only interact once, should be based on kin selection. 

While previous work in fields such as artificial life, distributed artificial 
intelligence and machine learning has produced limited success with coop- 

erative systems (Frean & Abraham 2001, Ackley & Littman 1994, Axelrod 

1984, Ashiru & Czarnecki 1997), the understanding necessary to allow com- 

puting agents to cooperate is still largely lacking. Consequently, any progress 

gained from research into cooperation should add valuable knowledge to a 

poorly understood area, which has the potential to provide enormous benefits 

to many areas of computer science. 

1.1 Identifying a Research Topic 

The initial choice of research topic: 'An Investigation into Cooperative Be- 

haviour' was decided upon after consideration of a number of research topics 

related to artificial intelligence, an area in which the author is particularly 

interested. The choice was eventually made to study cooperative behaviour 

as it was felt that the large body of associated research literature had re- 

sulted in limited progress for cooperative computing environments. Many 

areas of computer science research that would benefit from a cooperative 

environment, such as scheduling, routing and parallel problem solving, were 
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still struggling to take advantage of cooperation. Consequently, any progress 

in the topic would have a reasonable chance of providing useful advances in 

a number of application areas. 

A literature review was performed and the following conclusions were 

drawn: 

Of the various disciplines that have produced research literature on 

cooperation, the majority of the theoretical advances have been made 

by biologists, mainly behavioural ecologists/ et hologists and molecular 

biologists /geneticists, their work sometimes drawing on game theory, 

most notably for the concepts of an evolutionary stable strategy and 

reciprocal altruism. 

As expected, in computer science, almost all research into the use of 

cooperation in computing systems has come from the artificial intelli- 

gence literature, mainly from the evolutionary computing, distributed 

artificial intelligence and machine learning sub-disciplines. 

Within the artificial intelligence field the literature concerning coopera- 

tive research can be placed into one of two categories, depending upon 

whether or not it is based on evolutionary computation techniques. 

The literature review revealed that there is little cross-fertilisation of 

research between these two categories. 

As an immediate consequence of the literature review it was possible to make 

some recommendations concerning the design of cooperative systems based 

on standard evolutionary computing techniques such as genetic algorithms 

and genetic programs, as discussed in Section 3.1.5. 
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After the literature review had been completed a narrower research focus 

was needed. In an attempt to identify a more specific focus area it was 
decided that a number of questions that had arisen during the literature 

review ought to be considered and experiments designed to help in answering 

them. It was hoped that this work would provide an insight into which of the 

questions were likely to lead to productive research. The questions identified 

were: 

* Does the underlying topology of an environment affect the emergence 

of cooperation in any way? 

e What are the likely effects on cooperation of the basic behavioural 

characteristics of computer systems based on simple evolutionary tech- 

niques such as genetic algorithms? 

e If reciprocal altruism is to be used as a mechanism for cooperation, 

how do altruist strategies change as they evolve over time? 

o If kin selection is to be used as a mechanism for cooperation, how close 

does the genetic link between kin recognition and altruism have to be? 

* Are there any other mechanisms by which cooperation might be en- 

couraged within a computing environment? 

This approach resulted in a number of experimental designs and programs, 

including: 

eA testbed for an investigation into environment topology along with 

some associated analysis. 
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A series of experiments concerning the behaviour of simple genetic al- 

gorithm systems (mainly concerning convergence and deceptive func- 

tions). 

An experimental design for an investigation into the way that the learn- 

ing of strategies by artificial neural networks for the repeated Prisoner's 

Dilemma changes those strategies over time. 

Experiments into the way in which kin selection is affected by inaccu- 

rate kin recognition. 

A series of experiments concerning the evolution of a system of eco- 

nomics to encourage cooperation within a population of computational 

agents. 

Out of all of these research threads the one that seemed most promising 

was the investigation into kin selection, primarily because it highlighted a new 

consideration for cooperative systems based on kin selection: the problem of 

kin selective instability. 

As mentioned in Section 2.2, it was also decided at this time, after careful 

consideration, that the evolutionary computing research field would be the 

area most likely to provide significant progress in cooperative computing, 

since it is already known that cooperative systems have evolved in Nature 

(and thus, that it is possible to evolve cooperative systems in this way), 

and since every symbolic cooperative framework stems from an analysis of 

the problem domain it would seem preferable to allow a generic system to 

evolve the required framework, rather than having to analyse every applica- 

tion area in detail before one could be designed. Consequently, the emphasis 
for research was placed on evolutionary systems. 
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With the research emphasis on evolutionary systems and as a result of the 

experiments concerning kin selection, which had highlighted the instability 

of kin selection, the next stage of research was directed towards answers for 

the following questions: 

Since the instability in kin selection seems to be caused by genetic 

operators such as crossover and mutation, under what conditions will 

these effects be most pronounced? 

2. Are there any mechanisms that can be used to produce stable kin se- 

lection? 

Are there any other mechanisms for cooperation that can be used to 

encourage the evolution of cooperation in computational environments? 

The first question has produced both theoretical and experimental evidence 

for the link between an increase in the rate of change of an environment, 

and the decrease in the amount of cooperation within that environment. 

This work has also identified a new type of selective pressure in fast chang- 

ing environments and has produced a proposal for the use of a 'sum XOR' 

or Hamming fitness term as a replacement for mutation-based population 

diversity (see Chapter 4)_ 

The second and third questions have been studied, and of several promis- 

ing mechanisms for stabilising kin selection - multiple loci altruism, inter- 

demic selective systems and group fitness - it has been the last that has 

produced the most promising results (see Chapter 5). 

It appeared that stable, kin selection based cooperative systems could be 
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developed, and it was proposed that the research topic should be defined as 

a search for the answer to the following question: 

'If kin selection is inherently unstable, where is the stabilising fac- 

tor; and what alternative mechanisms can be used to encourage 

cooperation to evolve in computational environments? ' 

It was proposed that a successful answer to this question was attainable, and 

also that it would constitute an original contribution to the understanding 

of cooperation within computing systems. 
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Chapter 2 

Overview of Previous Work 

The overwhelming majority of research into cooperation has come from biol- 

ogists. Before any computer scientist attempts to tackle the problems associ- 

ated with cooperative computer environments it is necessary for him (or her) 

to understand the relevant biological literature; and in order that the liter- 

ature may be understood, a grounding in cell biology, genetics, behavioural 

ecology and other related disciplines is often required. 

The following overview is divided into two sections: the biological liter- 

ature (including the necessary background reading for computer scientists 

without the relevant biological knowledge), and computing and other litera- 

ture (including work from areas such as game theory, economics and political 

science). 

2.1 Biological Literature 

Although many of the more popular biological source documents are accessi- 

bly written and often include useful glossaries, the majority of the theoretical 

research papers require the reader to be familiar with many biological terms 
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and concepts. Some good sources for background reading include Alberts, 

Bray, Lewis, Raff, Roberts & Watson (1989) for information about the molec- 

ular biology of the cell, including a wealth of information on genetics; for a 

more biochemical approach, both Rose (1991) and Holzmiiller (1981) are 

good sources. For an interesting historical perspective Schr6dinger (1944) 

is a physicist's approach to molecular biology before the r6le of DNA was 

understood. It contains a number of original insights into the foundations 

of living systems. An associated book containing contributions from many 

of the current researchers in the field is Murphy & O'Neill (1995). For an 
introduction to behavioural ecology Krebs & Davies (1991) is the standard 

authority. 

Of the biologists whose research relates directly to cooperation, perhaps 

the best known is Richard Dawkins, whose work builds on the great theo- 

retical biologists of the past, including Darwin (1859), Spencer (1864) (who 

coined the phrase 'survival of the fittest') and Fisher (1930), the statisti- 

cian whose mathematical underpinning of genetics is invaluable. Dawkins' 

most famous work concerns his 'selfish gene' approach to Darwinian evolu- 

tion, which considers the gene as the fundamental unit of selection (Dawkins 

1976). Since the most successful genes will be those that reproduce most ef- 

fectively it would at first appear problematic that the natural world contains 

many examples of organisms cooperating. Although one possible explanation 

is the 'good of the species' theory of Wynne-Edwards (1962) (also referred 

to as group selectionism), this would tend to contradict the assertion that 

natural selection acts on genes, not individual organisms (and definitely not 

reproductive groups of individuals). Fortunately, there is an alternative the- 

ory that explains cooperation, which is based on the work of Fisher and Hal- 

dane (Fisher 1930, Haldane 1932, Haldane 1955), and developed by Hamilton 
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(1964). It is called kin selection and is described in detail in Section 3.1. 

The other major contributor to the biological understanding of evolution 

and cooperation is John Maynard Smith. Of most relevance is his paper on 

the evolution of social behaviour (Maynard Smith 1982b), in which he outlines 

a possible classification of behavioural models. Maynard Smith argues that 

any model will consist of one or more of the following mechanisms for social 

behaviour (taken from Maynard Smith (1982b)): 

1. Individual selection. Not involving selection for altruistic traits'. 

2. Interdemic selection. Reproductively isolated groups exist: 

(a) depending on differential production of migrants (Wright 1945), 

(b) depending on group extinction (Wynne-Edwards 1962). 

3. Kin selection. Reproductively isolated groups need not exist, but in- 

teractions occur between relatives (Hamilton 1964). 

Synergistic selection. Interactions occur between non-relatives (Cohen 

& Eshel 1976, Wilson 1975, Matessi & Jayakar 1976). 

5. Reciprocal altruism (Trivers 1971). 

Interdernic selection can be understood as a mechanism by which 'islands' 

of individuals prosper if they cooperate; selfish islands of individuals die 

out more readily and are replaced in the environment by more cooperative 
'Maynard Smith states: 'By an "altruistic" state is meant a trait which, in some sense, 

lowers the fitness of the individual displaying it, but increases the fitness of some other 

members of the same species. ' 
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colonies (as they are more likely to survive). Synergistic selection is a more 

general form of mutualism where the interacting individuals are not restricted 

to belonging to different species. For more information on evolution by as- 

sociation in general, see Sapp (1994). Reciprocal altruism includes repeated 

episodes of interaction characterised by theoretical games such as the 'Re- 

peated Prisoner's Dilemma', invented in about 1950 by Merrill Flood and 

Melvin Dresher (Axelrod 1984, p. 216), and formalised by Al Tucker shortly 

thereafter (Nasar 1998, p. 118). The Prisoner's Dilemma is discussed in more 

detail in Section 2.2. Maynard Smith's paper is important because it lays out, 

from a biological perspective, the theoretical foundations for the evolution of 

cooperation. 

The other main contribution, by the same author, of relevance to cooper- 

ative systems is Maynard Smith (1982a), in which the concept of an 'evolu- 

tionary stable strategy' (ESS) is explained. According to Maynard Smith, an 

ESS is a strategy such that, 'if all the members of a population adopt it, no 

mutant strategy can invade. ' Other works of interest include Maynard Smith 

(1958), Maynard Smith (1989) and Maynard Smith & Szathmary (1995). 

There are many other biologists who have contributed to our current 

understanding of cooperation but they have not significantly added to the 

work mentioned above. However, one final mention ought to be made of the 

contribution of Sewell Wright, who originally defined the 'fitness landscape', 

a concept that is as ubiquitous as it is useful (Wright 1931). 

Although not strictly relevant, it is worth noting that evolutionary bi- 

ologists fall into one of two camps: the neo-Darwinists (also referred to as 

ultra- D arwinists), represented by Dawkins, Maynard Smith and others, and 
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the punctuationists, who support the view that evolution is not gradual but 

rather proceeds in '-spurts' that punctuate long periods of evolutionary sta- 

bility. The theory of punctuated equilibria was first proposed by Eldredge 

& Gould (1972). The punctuationists point to abrupt changes in the fossil 

record over geological time, which the neo-Darwinists suggest are simply the 

result of a variation in the rate of evolutionary change. The debate continues. 

2.2 Computing and Other Literature 

One area of research that has had a major contribution to the study of co- 

operation is game theory. Although there were previous contributors, for 

example Cournot (1838), who used a restricted form of a Nash equilibrium 

(see below), and Zermelo (1913), who proved that chess has only one in- 

dividually rational payoff profile in pure strategies, the standard work that 

forms the foundation of modern game theory is von Neumann & Morgenstern 

(1944), in which two-person, zero sum theory and the notion of a cooperative 

game with transferable utility are explained. 

In the early fifties, John Nash provided important theoretical advances 

in game theory, notably his proof of the existence of a strategic equilibrium 

for non-cooperative games - the Nash equilibrium (Nash 1950b, Nash 1951), 

and his foundation for axiomatic bargaining theory (Nash 1950 a, Nash 1953). 

More detail on Nash's contribution to game theory can be found in Nasar 

(1998). 

Many developments of game theory have since been produced, including 

a fascinating theory of convention design for use in automated negotiation 
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among computers (Rosenschein & Zlotkin 1994). The approach taken uses 

the analytical techniques of game theory and decision analysis and applies 

them to the dynamic organisation of autonomous intelligent agents. 

For a good, general introduction to classical game theory that covers both 

static and dynamic games, with or without complete information, Gibbons 

(1992) is highly recommended. 

One of the more recent developments in game theory is a controver- 

sial extension called drama theory (Howard, Bennett, Bryant & Bradley 

1993, Howard 1994, Bryant 1997), which attempts to tackle the situation 

where players are not necessarily rational. For example, consider one of the 

standard game theoretic problems: the Prisoner's Dilemma, which can be 

described as follows: 

Two people are arrested and separately questioned about a crime 

that they committed. They can cooperate with each other and 

say nothing, or defect and tell all. 

The consequences can be surnmarised as in Table 2.1: 

Table 2.1: A typical payoff matrix for the Prisoner's Dilemma in which both 
S<P<R<T and 2R> T+S hold 

He cooperates He defects 

I cooperate 1 

I defect 1 
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Note that for the Prisoner's Dilemma both S<P<R<T and 2R >T+S 

must hold, where S= Sucker's payoff, P= Punishment for mutual defection, 

R= Reward for mutual cooperation, and T= Temptation to defect. 

It is well known that the best strategy is to defect (since the payoff is 

greater than for cooperation, whatever your opponent does) 
- However, in real 

life, if best friends were to play they may well decide to mutually cooperate. 

Their attitudes to each other affect the game. This is less like a pure game 

and more like a drama. 

Another example (taken from Evans (1998)) is the problem of when to 

get angry. Consider two possible strategies: 'Old Faithful' and 'Mad Dog'. 

If you have a fixed anger threshold and only get angry if an insult exceeds 

some predetermined level of annoyance then others can quickly learn what 

they can get away with, without the geyser exploding. You are constantly 

pushed to the limit. Alternatively, if you adopt the 'Mad Dog' strategy 

you choose your anger threshold at any moment completely at random - 

sometimes a big insult doesn't generate an angry response, at other times 

a small insult receives the full force of your anger. 'Mad Dog' works better 

than 'Old Faithful' because others know that even the slightest insult can 

enrage you, yet you do not have to waste time and effort punishing every 

small insult. Drama theory is an attempt to extend game theory to take into 

account these various emotional strategies. 

The literature associated with agent systems can in general be charac- 

terised as either symbolic, or as evolutionary (although some of the work 

with artificial neural networks might not fit easily into either category), with 

little cross-fertilisation other than the adoption of some common problem 
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domains and assumptions. As has been mentioned in Section 1.1, it was 
decided that the evolutionary field would be the area most likely to provide 

significant progress in cooperative computing, since it is already known that 

cooperative systems have evolved in Nature, and, since every symbolic coop- 

erative framework stems from an analysis of the problem domain, it would 
be preferable to allow a generic system to evolve the required framework. 

Consequently, the emphasis in this research is on evolutionary systems. For 

more information on symbolic agent systems the reader is referred to Haddadi 

(1996) and Wooldridge, Miiller & Tambe (1996). 

Perhaps the best known approach to evolutionary computation is the 

genetic algorithm (GA), first developed by Holland (1975). There are other 

varieties of evolutionary computation, for example the evolution strategies, 

which are covered in Schwefel (1995), but the overwhelming majority of the 

literature concerns GAs. 

A standard genetic algorithm typically consists of a population of fixed- 

length, binary strings that represent candidate solutions to the problem under 

investigation, together with a suitable fitness function. The pseudocode for 

a typical genetic algorithm is shown in Figure 2.1. 

The termination criteria can include a particular generation number, the 

existence of a solution with acceptable properties, a measure of the state 

of the current population (normally a convergence measure), or any combi- 

nation of the above. As well as Holland (1975), other good, introductory 

texts on genetic algorithms include Mitchell (1996), Vose (1999), Goldberg 

(1989) and Michalewicz (1994). Reeves (1995) includes a good chapter on 

GAs, which covers the theory, various extensions and modifications, and 
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Figure 2.1: Pseudocode for a typical genetic algorithm 

1. Create random initial population. 

2. Evaluate fitness of each member. 

3. If finished STOP. 

4. Create next generation using fitness proportionate reproduction. 

5. Modify next generation using crossover and mutation. 

6. Replace current generation with next generation and goto step 2. 

some interesting applications. Davis (1991) contains useful information on 

the application of GAs to a variety of problem domains. 

In order that the techniques used in genetic algorithm research do not 

remain restricted to problems whose solutions can be represented by fixed- 

length strings, several developments have emerged, including the use of hi- 

erarchical candidate solutions, most famously as LISP programs in the work 

of Koza (1992) and subsequently in Koza (1994), and as combinatorial hi- 

erarchies in Watson (1994). The use of variable-length GAs occurs in the 

concept of a 'messy' GA, as developed by Deb & Goldberg (1991). 

One of the classic experiments involving cooperation and evolutionary 

computing was carried out, not by a computer scientist, but by political 

scientist: Robert Axelrod (1984). The experiment2 involved the submission 

of algorithms that implement a strategy for playing the repeated Prisoner's 

Dilemma (where the number of rounds is uncertain). A computer tournament 

2 Specifically, it was Axelrod's second experiment in which he considered the evolution 

of strategies for playing the repeated Prisoner's Dilemma. 
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was then held to determine the best strategy. Although the strategy 'TIT 
FOR TAT' did well, one of Axelrod's conclusions was that the best strategy 
depends upon the other strategies within the population. 

An extension of Axelrod's work has been produced by Lomborg (1996) in 

which mutation, implemented as a faulty copying of the strategy from parent 
to offspring, introduces noise into the environment. Lomborg maintains that 

the system evolves unexpected stability as a result of the noise, ensuring that 

the chances are low that the introduction of a new strategy will result in it 

dominating the population. 

There are many more papers to do with the Prisoner's Dilemma, for 

example Oliphant (1994) and Mor, Goldman & Rosenschein (1996), but most 

add little more than has already been discussed. 

One other major source of relevant research is the artificial life litera- 

ture (Langton 1989, Langton, Taylor, Farmer & Rasmussen 1992, Langton 

1994, Brooks & Maes 1994, Varela & Bourgine 1992). In particular, the work 

by Hillis (1992) into co-evolution is highly relevant to all symbiotic environ- 

ments. Hillis shows that by co-evolving the test cases in parallel with the 

sorting functions in which he is primarily interested, if the fitness of a test 

case is based upon its ability to cause problems for a sorting function, then 

the resulting population of sorting functions will be more robust than if the 

test cases were not co-evolved. Hillis' work has spawned a mini-industry in 

problem solving through the use of CAs and co-evolution. Examples of the 

application of co-evolution can be found in Potter & De Jong (1994) and 

Reynolds (1994). A good, general introduction to artificial life can be found 

in Sigmund (1993). 
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There are many other papers, journals and sources that contain material 

relevant to the study of cooperation but the overview presented here should 

give the reader a feeling for the current state of related research. Further 

references to literature specific to particular topics are provided in the thesis 

in the relevant sections. 

In the next few sections some aspects of cooperative environments will 

be considered and some new insights will be explained - starting with the 

consequences, for cooperation, of kin selection. 
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Chapter 3 

The Instability of Kin Selection 

Modern explanations of cooperation are based on two main theoretical mod- 

els: kin selection and reciprocal altruism. If individuals learn to cooperate 

within a particular generation (for instance, when playing a version of the 

repeated Prisoner's Dilemma) it is reciprocal altruism that is used to explain 

their behaviour. Alternatively, when there is little or no learning within a 

single generation and when cooperation persists from one generation to the 

next, the standard explanation relies on kin selection. For cooperative, evolu- 

tionary computing systems the theory of kin selection is extremely important. 

In this chapter, kin selection is considered in detail and an experiment is de- 

scribed which shows that kin selection is not a sufficient explanation for the 

persistence of cooperation. 

3.1 Kin Selection Considered 

Kin selection can be surnmarised with the statement: 'By helping a rela- 

tive, an individual is propagating its own genes. ' In his most famous paper, 

Hamilton (1964) formalised the notion of kin selection and introduced the 
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concept of a criterion for kin selective dominance, known as Hamilton's in- 

equality. Later work by Hamilton showed that kin selection should still work 
for genes irrespective of their rarity. Hamilton's inequality can be formulated 

as follows (adapted from Maynard Smith & Szathmary (1995, p. 259)): 

Imagine a rare gene A, which causes an individual D (donor) to perform an 

act X. The effects of act X are: 

9 To reduce the expected number of gametes that D passes on to the 

next generation by c (cost) 
- 

e To increase the expected number of gametes that a 'recipient' R passes 

to the next generation by b (benefit) 
- 

Consequently, Hamilton's inequality states that act X increases the number 

of A genes in the next generation if: 

b1c > I/r 

where r is the coefficient of relatedness between D and R. 

As was stated above, kin selection is now considered to be the major 
inter-generational mechanism for the evolution of cooperation (the major 

intra-generational mechanism being reciprocal altruism). Before considering 

kin selection in any more detail, it is necessary to explain it carefully, and 

to point out the main sources of confusion. The following explanation is 

adapted from Watson (1996). 
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The Need for Kin Selection 

Evolution is seen, by neo-Darwinists, as a process controlled by three factors: 

mutation, natural selection and migration (Maynard Smith 1989, p. 180). 

Within a given environment a population of replicators generates novelty 

through mutation, develops adaptation with natural selection, and produces 

new, distinct populations through migration (called allopatric speciation). 

The main difference between Darwin and the neo-Darwinists is that Darwin 

thought of reproduction as a blending of parental information, as opposed 

to the modern, particulate theory of genetic recombination (Darwin 1859, 

p. 47). But the real difference is that Darwin thought that natural selection 

selected the fittest individuals, and the neo-Darwinists believe that it is the 

gene that is the true unit of selection. The individual is seen by them as 

merely a vehicle for the replicating genes (Dawkins 1976, p. 254). For a 

good explanation of the molecular biology involved, see Alberts et al. (1989) 

and Rose (1991); for an investigation into some of the consequences of neo- 

Darwinism, see Jones (1993) and Gould (1980). 

The modern theory of evolution is very good at explaining the complex 

adaptations observed in living systems, for example: sophisticated organs 

such as the eye, various forms of animal mimicry, and parallel adaptations 

of predators and prey. But, by concentrating on the gene as the unit of 

selection, some aspects of life seem difficult to explain. Examples of these 

include the development of sexual reproduction, the observed rates of muta- 

tion within genetic material and the apparently altruistic behaviour of some 

individuals towards their close relatives (which includes the phenomenon of 

parental care). All three of these examples have been explained by recourse 
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to the 'good of the species' (for an intelligent example of this type of expla- 

nation, see Wynne-Edwards (1962)), but group selection (as it is known) is 

itself something that seems opposed to a view of genes as 'selfish' replicators, 

with no ability to see into the future. Superficially, from the point of view of 

an individual gene, sexual reproduction is only half as effective as partheno- 

genesis', no mutation is better than some mutation 2 and a selfish vehicle 

seems to be the best form of transport. Kin selection is a theory, first sug- 

gested by W. D. Hamilton (although Maynard Smith (1958, p. 195) claims 

to have suggested the term 'kin selection'), which attempts to explain the 

apparently anomalous, altruistic behaviour of certain individuals, without 

recourse to group selectionism (Hamilton 1964). 

3.1.2 Altruism and Kin Selection 

In order to explain the principles behind kin selection it is useful to talk of 

genes as though they consciously choose between a number of alternatives, 

and to think of them as promoting or inhibiting various phenotypic phe- 

nomena. Thus, during this explanation of kin selection, it will be useful to 

state that a gene chooses to cause an individual to act altruistically. It is 

worth stating, to allay any possible misunderstandings, that genes do not 
'Reproduction from a single germ cell (a gamete) without the need for fertilisation - 

thus passing on all of the mother's genes to the daughter. 
'Although it may seem that mutation is fixed by the environment, in fact there are 

populations of bacteria that contain individuals with repair enzymes that are more accu- 

rate than the population average - leading to these individuals having a lower mutation 

rate. However, over successive generations, the population average mutation rate doesn't 

go down, so it would appear that the mutation rate is chosen by the bacteria (May- 

nard Smith 1989, p. 184). 
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have free will or intelligence, and that genes do not wholly determine char- 

acteristics such as altruism. In spite of this, it is readily acceptable that, in 

a given environment, two individuals, differing by one gene, might display 

slight differences: a slightly longer leg in one, or a slight change in brain de- 

velopment such that, all things being equal, one individual might be slightly 

more cowardly than the other - or slightly more altruistic. Given a popula- 
tion containing a variety of genes (or, more accurately, gene values) at the 

same locus on a chromosome 3, and given that they produce functional dif- 

ferences in their corresponding phenotypes, then it is reasonable to assume 
that some genes will be more likely than others to find themselves in the next 

generation. In this way, a gene that 'chooses' to promote a particular trait 

can be said to prosper in relation to other genes, at the same locus, which 

make inferior choices. 

The theory of kin selection can be explained within the context of selfish 

genes by considering the 'purpose' of a gene - namely, to get the maximum 

number of copies of itself into the next generation (i. e. each copy of the gene 

tries to replicate as much as possible). Consider the following: an individ- 

ual has found a hidden food source providing plenty of food. Should it let 

others know about it? To answer the question consider what would happen 

if the others were unrelated. Feeding them would increase their chances of 

reproduction by increasing their chances of survival. This will increase their 

probability of mating with a given partner, and thus decrease the discov- 

'Mutating a gene may alter the phenotype in some way. A subset of all possible 

mutations of this gene will exist in the population and are known as alleles - alternatives 

at a given locus. These alleles can be thought of as competing genes, with the alleles that 

produce the most successful phenotypic variants being considered the winners within the 

population. 
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erer's chances of doing the same (all things being equal). So selfishness is 

the best strategy. In a given population, with these circumstances the selfish 
individuals will prosper, along with the genes that predispose them towards 

selfishness. 

Now consider the case where all the individuals are closely related. If 

they are brothers, from the same pair of parents, then they will each contain 

half of the discoverer's genes (on average). There is plenty of food so feeding 

them will increase the number of copies of those genes in the next generation. 

The more closely related they are, the greater the advantage conferred on the 

discoverer's genes. So it may well pay to be altruistic. This is kin selection. 

Before individuals can behave altruistically towards their close relatives, 

they must first recognise them. In other words, a gene that promotes recog- 

nition of kin will allow altruism to develop. Thus, some smells, calls, patterns 

of movement and markings can be explained in terms of kin selection. But 

what about a situation in which altruism involves a far greater sacrifice? 

Should an individual sacrifice itself for one brother, or two, or three, and 

how about cousins? In order to answer these questions a quantitative mea- 

sure of altruistic advantage is needed The conventional measure is called 
inclusive fitness. 

3.1.3 Measuring Altruism 

Fitness is both a useful and a confusing concept. In Darwin's time, fitness 

was considered to be linked to the utility of an individual's organs. An animal 

with a stronger jaw, or a sharper eye, is more likely to survive and thus to 
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reproduce. In time, it was seen that the link between fitness and survival was 

so useful that fitness was redefined to mean, 'the factor which predisposes an 
individual to be likely to survive'. This definition of fitness rendered Herbert 

Spencer's phrase, 'survival of the fittest', tautologous (Spencer 1864). The 

advent of the 'modern synthesis' (as neo-Darwinism is often called) brought 

a new definition of fitness, emphasising the importance of the gene as the 

unit of selection. This is what is referred to by the term inclusWe fitness. 

Hamilton (1964) realised that classical fitness is too limited in scope: it is 

a measure of the reproductive success of a single individual. But an individual 

is merely a vehicle for the real replicators - the genes. The reproductive 

success of an individual is irrelevant, since it is ephemeral. What is needed 

is a measure of the reproductive success of genes. However, this measure has 

to be associated with individuals for it to be useful in practice, as in nature 

we perceive individuals, not genes. Consequently, Hamilton defined inclusive 

fitness to be an individual's own reproductive success plus its effects on the 

reproductive success of its relatives, each one weighted by the appropriate 

coefficient of relatedness - half for each brother, one-eighth for each cousin, 

and so on. 

3.1.4 Confusions of Inclusive Fitness 

An important point is that if a brother emigrates to Australia, then the indi- 

vidual's inclusive fitness isn't increased every time its brother reproduces, as 

the individual can have no effect on its brother's reproductive success (bar- 

ring exceptional circumstances). Thus, the fitness of an individual is related 

to the effectiveness of its genes to get themselves replicated in future gener- 
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ations, i. e. how effective a gene is at replicating itself, plus what difference it 

makes to the replication success of the gene at the same locus in all relatives, 

weighted by the probability that these loci contain copies of itself. 

Notice also that this definition of fitness is a relative measure, as opposed 
to absolute, classical fitness, and that inclusive fitness is a property of a triple 

consisting of the individual in question, an act or set of acts of interest, and 

an alternative set of acts for comparison. A common fallacy is that inclusive 

fitness is the weighted sum of the reproductive successes of the individual 

and all of its relatives. One of the problems associated with this view is 

that children can often be counted several times, as though they have many 

existences. The various, common misunderstandings of kin selection are 

discussed in Dawkins (1979), and for the interested reader, a good description 

of the different meanings attributed to fitness is provided by Dawkins (1983, 

pp. 179-194). 

3.1.5 Designing Cooperative Environments 

So what are the requirements for the emergence of kin selective effects in a 

computer environment? First, the individuals (software agents) need to be 

active - it is not sufficient to have a standard genetic algorithm model of 

evolution, modified to increase interactions between relatives, and to expect 

that kin selection will produce cooperation between individuals. There has 

to be some way for the behaviour of an individual to have an effect on the 

reproductive success of its relatives (i. e. with a standard GA, an individual's 

fitness must be influenced by the behavioural effects of its relatives). A 

more suitable model for active individuals would appear to be Koza's genetic 
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programming (GP) approach (Koza 1992, Koza 1994). However, the r6le of 

chromosomal loci should be considered, since GP individuals do not generally 

contain homologous chromosomes. 

A locus on a chromosome in many respects defines the function of a 

gene. When an organism develops and its cells divide and differentiate, 

different parts of the body contain cells with different gene expression. In 

other words, the bits of DNA that are unravelled and exposed to the cellular 

mechanisms are different for the various parts of the body. Thus, the various 

gene values that affect eye colour will be found in the same loci. But GP uses 

tree structures that vary widely and which don't have loci. However, if the 

genetic units within a GP structure continue to perform the same function 

as they travel through a series of generations, then they would be behaving 

as though they have loci. Unfortunately, this isn't generally the case. This 

leads to another consideration, namely the function of a genotypic unit (a 

gene) in the context of an individual. 

When thinking about evolutionary adaptation it is easy to get confused 

by the difference between the function of the individual and the gene. Evolu- 

tionary pressures affect genes, causing the best reproducers to dominate the 

population. Genes group together and form collective, phenotypic entities - 
individuals - because this gives them the best reproductive advantage (more 

is said on this subject in Chapter 5). A particular gene contributes in a spe- 

cific way to the individual's overall phenotype; perhaps it affects eye colour, 

or whether it shares its food, or perhaps it does both. A gene which con- 

tributes to more than one phenotypic trait is called pleiotropic. For a useful 

trait to dominate the population (for example, long legs) there must be a 

particular collection of gene values in the population that affect leg length to 
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a greater or lesser extent. Then, since longer legs mean that individuals will 
be better at reproducing, the population will be dominated by long legged 

individuals, all carrying a 'long leg' gene value. For kin selection to affect the 

population it is wrong to think that altruistic animals will dominate because 

they will help each other and thus become more reproductively efficient. 

This will only happen if there is one gene that simultaneously encourages 

altruism, and that helps in the recognition of relatives. This is because evo- 
lution works on genes, not on individuals. Dawkins gives an example of a 

gene which causes beards to become green and that also encourages altru- 

ism (Dawkins 1983). It may be that two closely linked genes are affected by 

a weaker kin selection, since they will appear to be one large gene', and the 

larger the gene, the more likely it is to be broken up by genetic crossover, 

thus the advantage gained through being better at reproducing is reduced 

by its higher likelihood of being broken up. 

Consequently, for kin selection to work, we need to have pleiotropic genes 

that simultaneously encourage altruism and increase the chances that an 

individual will be altruistic to close relatives. This can be done by recognis- 

ing relatives by their traits, or by their physical location in a metric space 
(when, given suitable reproductive and migratory behaviour, close relatives 

will tend to be the nearest individuals). Examples of models that use the con- 

cept of locality can be found in the artificial life literature (Frean & Abraham 

2001, Langton 1989, Langton et al. 1992). Furthermore, these genes need to 

4 Genes are not strictly defined. Theoretical approaches to genetics usually assume genes 

to be atomic so, as progressively larger collections of codons - or bits - are considered, the 

more likely it is that such a collection will not survive intact across a number of generations, 

thus making them appear less like atomic genes. However, it is not unreasonable to talk 

of two closely linked genes as appearing to be a single, large gene. 

35 



perform a similar function as they travel through generations of individuals. 

So, for kin selection to work, a computer environment will need to contain 

active individuals with functionally constant, pleiotropic genes, and perhaps 

would benefit from the inclusion of an environment which promotes neigh- 

bourhoods of close relatives. 

3.2 An Experiment to Test the 'Green Beard' 

Effect 

Although the theory seems to be convincing, since the effectiveness of any 

cooperative computing system based on kin selection will rely on some form 

of kin recognition 51 it seemed sensible to confirm the theoretical results ex- 

perimentally. Consequently, an experiment was designed to test the 'Green 

Beard' effect of kin selection, as described by Dawkins (1983, pp. 143-155). 

If genes for growing a green beard and for helping green-bearded indi- 

viduals occur sufficiently close to each other on a chromosome then, as long 

as 
benefit to recipient I 

cost to altruist 
> 

P(recipient has altruist gene) 
it follows that the altruist gene should be advantageous and should dominate 

the population. 

The experimental model of the chromosome can be thought of as an N 

bit string containing two, one bit gene loci: a 'green beard' gene locus and 
5 Note that kin recognition is present but implicit in models where relatives tend to be 

neighbours in a spatially extended environment. 
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an ýalways help a green-bearded individual' gene locus. A one in either locus 

indicates that the gene is active. The experiment uses one point crossover, 

which results in the genes being disconnected and reconnected with a new 

gene if the crossover point falls between the two gene positions. The proba- 

bility of this happening is 

number of crossover positions between loci 

number of crossover positions in chromosome 
PC 

If the genes were adjacent in an infinitely long chromosome they would be 

inseparable (P, = 0). If they were at either end, then P, = 1. Halfway be- 

tween these extremes: P, = 1. Irrespective of the length of the chromosome, 2 

P, =0 can be considered to represent a single, pleiotropic gene. Thus the 

population of chromosomes can be modelled by a collection of two bit strings 

with a single, fixed P, value. 

The experiment should be able to confirm that the altruism gene is ad- 

vantageousif 

b 
-> 

C 

I 

P(recipient = 01 or 11) 
number of Ils and 10s 

number of Ils 

where b is the benefit to the recipient, c is the cost to the altruist, and where 

the first bit in a bit pair represents the green beard gene, with the second 

bit representing the help green beards gene. The ratio on the far right shows 

that only 11s will receive any benefit (since Ols don't have a green beard) and 

that, similarly, 00s and Ols are never the recipient in any altruistic exchange. 

Several experimental runs were performed (see Appendix A), each with a 

variety of initial populations - for example, half 00s and half Ils (ý > 1), or c 
the same number of each of the four possibilities (b> 2) - and with different 

C 
N, alues for ý. Over several generations the population was randomly split into 

c 

37 



pairs, the first in each pair would then interact altruistically dependent upon 

its second bit value, then the next generation was formed and, if not turned 

off, the genetic operators, crossover and mutation, were applied. 

Two points concerning the program are worth highlighting. Firstly, as in 

all experimental programs that rely on simulating random processes, a good 

pseudo-random number generator (PRNG) is important. The PRNG used 

for this research is included in Appendix H. Secondly, this program, and 

some of the later ones, use an interesting method of simulating a random 

shuffling of the population when all that is required is to randomly partition 

a population into pairs. This method is covered in Appendix D. 

3.2.1 Results and Conclusions 

With the crossover probability P, equal to 0 (in effect, simulating a single, 

pleiotropic gene) and with no mutation the results were as expected when 

the initial population contained no 10s. Figure 3.1 shows that an initial 

population of roughly half 00s (selfish, no green beard) and half Ils (altru- 

istic, green bearded) is quickly dominated by the altruists when it pays to 

be altruistic (see also Appendix A. 2). When there is no benefit but still a 

cost associated with altruism, Figure 3.2 and Appendix A. 3 show that the 

selfish individuals dominate (the fluctuations are the result of stochastic ef- 

fects when the altruists become so rare that they almost never meet each 

other and consequently almost never behave altruistically). But for even ex- 

tremely low values of P, and/or mutation, and for initial populations that 

contained 10s, the altruism gene would never become dominant. Figure 3.3 

shows the results for a typical experiment that represents individuals with 
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a single, pleiotropic, altruistic green beard gene (i. e. no crossover) and low 

mutation (see also Appendix AA). This result should be expected, since kin 

mimics (10s) will reap the rewards of altruism, but won't suffer any of the 

associated costs. One point to note is that as the kin mimics increase in 

frequency their selective advantage decreases since there are fewer altruists 

about. At a point arbitrarily near to complete population convergence to all 

kin mimics, the variation in numbers of kin mimics is arbitrarily close to a 

random walk. 

Figure 3.1: Results for 'Green Beard' effect program with no crossover and 
no mutation 
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The consequences of this experiment for kin selection are enormous. It 

shows that kin selection is inherently unstable and, in any population when 

given enough time, altruistic cooperation will die out. An analysis of kin 

selective instability for large populations is given in Section 5.1. 

A similar result will occur in an evolving population in which genes confer 
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Figure 3.2: Results for 'Green Beard' effect program with no crossover, no 
mutation and with benefit= 0 
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differing probabilities of looking like and acting like an altruist. Consider an 

individual with a particular pair of probabilities (Pi, P,, ), where P, is the 

probability of looking like an altruist and P,, is the probability of acting like 

one. If another individual with a different set of alleles has a probability pair 

(P, ', P,, ) with P,, < P,, then it will dominate the first if P1, > P, or if the extra 

fitness it gets by being less altruistic more than compensates it for any loss 

incurred by looking less like an altruist. In this way the population will tend 

to become dominated by individuals that display the most profitable possible 

combination of looking and acting like an altruist. While selective pressure 

favours gene values that promote looking like an altruist evolution certainly 

doesn't encourage being one. 

On rereading the kin selection literature it almost seems as though the 

biologists understand the problem. In his paper on kin selection Grafen 

(1984, p. 79) states at one point, when considering preferential assortment 
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Figure 3.3: Results for 'Green Beard' effect program with no crossover 
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'there would be selection for a "free-rider" allele (if one arose) at 

a locus unlinked to the altruism locus. It would have the effect 

of creating the same habitat preference as that of the altruists, 

whether or not its bearer was an altruist. ' 

However, Grafen doesn't appear to conclude that this is a potentially fatal 

flaw for kin selective altruism. 

Maynard Smith (1958, p. 199) also seems to have considered the problem. 

In a section that discusses group selection and altruistic individuals that 

voluntarily refrain from reproducing when the population density becomes 

too high he points out that, in a mixed population of altruists and non- 

altruists, the altruistic individuals will be eliminated by selection. Again, 

this is not seen as a serious problem for kin selection. In fact, Maynard 
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Smith suggests that, rather than group selection, it is kin selection that can 

be employed to explain the persistence of this kind of behaviour in animals 

such as mice and lemmings. 

More recently, in March 2003, in an 'Inside Science' report on cooperation 

in the 'New Scientist', Randerson (2003) highlights the problems of cheating 

in cooperative populations. But, rather than cheating being a problem for 

kin selection, it is the cheaters who have the problem. The end of the report 

is as follows: 

'But even in slime mould society there are cheats, because 

although cells that become spores get to spread their genes far 

and wide, stalk cells are doomed. Kin selection helps because 

the spores and stalk cells are related, so the sacrifice by the stalk 

cells benefits genes they have in common with the spores. How- 

ever, fruiting bodies often contain cells from two different, less 

closely related groups, and sometimes one of the groups cheats 

by contributing more than its fair share of spores, leaving the 

other group to build most of the stalk. 

There can be little doubt: selfish genes are behind both cheat- 

ing and cooperation. Despite the existence of so much teamwork 

in the natural world, Darwin's vision of nature red in tooth and 

claw still holds true, because if you dig deep enough, cooperation 

is always underpinned by genes looking after number one. But 

watch out: in nearly every successful team there are freeloaders 

who are happy to sit back and reap the rewards of everyone else's 

hard work. ' 
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This seems to be a description of a stable, cooperative population in which 

cheating is controlled by kin selection. 

The instability of kin selection could also explain a curious comment in 

Ackley Littman's paper on altruism in the evolution of communication 
(Ackley Littman 1994, p. 47). After explaining the emergence of altruistic 

communication by using kin selective arguments, the authors write: 

'From an evolutionary computation point of view, perhaps the 

most striking aspect of these studies is that they make no use of 

mutation. As mentioned earlier, we were pushed to this decision, 

against our own preconceptions, simply because it worked better. ' 

Perhaps the reason is that even a small amount of mutation will give rise to 

free-riding kin mimics? 

Frean & Abraham (2001) are also affected by the instability of kin selec- 

tive cooperation. They investigate a spatial version of the Prisoner's Dilemma 

in which strategies for playing the game are placed on a two-dimensional grid. 

At each time step, a strategy at a particular site is chosen to play with one 

of its neighbours. The strategy invades its neighbour with a probability that 

is proportional to the payoff it receives from the game. It might be expected 

that, since relatives tend to be close to each other, kin selection would en- 

courage cooperation. This appears to happen. However they state that, 

'the average level of cooperation decreases with time if mutation 

of the strategies is included. Spatial effects are not in themselves 

sufficient to lead to the maintenance of cooperation. ' 
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Frean & Abraham offer no explanation of this result but it would appear to 

be another example of the destruction of cooperation by kin mimics. 

Even the most respected of researchers into cooperation would seem to 

have missed the point. Riolo, Cohen & Axelrod (2001) attempt to show that 

cooperation can evolve in systems that don't require reciprocal altruism. 

This is an implicit acknowledgement that previous attempts to do so have 

not been successful. They evolve a population of individuals, each with two 

real-valued genes: one gene that represents a 'tag' or identifiable phenotypic 

trait, the other gene representing a tolerance for cooperation. Each gene 

value is between zero and one, and if an individual interacts with another 

that has a tag value tolerably close to its own then it will cooperatively 

donate some fitness to it. The authors claim that cooperation emerges and 

is maintained within their model. 

In a response to Riolo et al. (2001), Roberts & Sherratt (2002) quite 

correctly point out that cooperation cannot fail to emerge as the least coop- 

erative individual will have a zero tolerance and will still have to cooperate 

with clones of itself. In fact the model shows that as the population evolves 

the tolerance levels drop - indicating that the individuals are doing their best 

to lower their rate of cooperation. In a modified model, Roberts & Sherratt 

show that cooperation will die out if allowed to. However they don't conclude 

that this is because of kin instability. They state that, 

'Cooperation under the original conditions of Riolo et al. oper- 

ates through a process of "like helping like" - agents sharing any 

particular tag also share the rule of donating to each other, so a 

form of kin selection can support cooperation. However, agents 
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can have identical tags without having a recent common ancestor, 

so in our modified system they can share tags without sharing the 

rule for cooperating. Because tag similarity is no longer a reli- 

able guide to behaviour, the system of "like helping like" breaks 

down. ' 

Proponents of kin selection would agree that if the genes for altruism are not 

also the genes for the recognised trait then cheating might destroy coopera- 

tion. The response from Riolo, Cohen & Axelrod (2002) is not convincing. 

And even if altruism and recognition were to be controlled by the same genes, 

it has been shown that kin selection is still unstable. 

Since cooperative populations exist in Nature, either kin selection is stable 

because of some other factor, or the perceived stability of cooperative popu- 

lations is due to a different mechanism. The question is: where is either the 

missing factor, or the alternative mechanism? Various candidate solutions 

(including multiple loci altruism, and group selective approaches to overcom- 

ing the 'tragedy of the commons' (Hardin 1968)) have been investigated and 

Chapter 5 describes how cooperative populations can be stabilised. 

But is the instability of kin selection the only reason why cooperation 

might not emerge in computer-based evolutionary systems? In Chapter 4 an- 

other equally problematic phenomenon is considered - the effect caused by an 

environment that changes from generation to generation - and a mechanism 

for overcoming it is revealed. 
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Chapter 4 

Coping with Fast-Paced 
Environments 

Cooperation takes time to develop. From the cooperative actions of op- 

posing, first World war soldiers to the formation of business cartels, if the 

environment does not stay constant for a sufficiently long period then coop- 

eration will fail to emerge. And it is not just reciprocal altruism that suffers 

from this problem. For kin selection to produce cooperation (ignoring, for 

the moment, that it is unstable), there needs to be enough time for mutation 

and crossover to produce sufficient numbers of altruists so that interactions 

occur between them, and enough time for them to become sufficiently fit, 

and sufficiently numerous, to dominate the population. 

The problem, stated simply, is to find the optimum (or optima) before 

the optimum changes. In an evolving system in which an individual's fitness 

is relative to the other members of its generation, the optimum is changing 

with every generation. Consequently, a fast-paced environment is often a 

barrier to evolving, cooperative systems. 

This chapter considers the difficulties of finding and tracking optima in 
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fast-paced environments. It then identifies and tests some promising methods 
for overcoming these problems. 

The first topic under consideration is mutation. Since mutation rates 

seem to be intimately associated with the rate of change of a population, the 

next section considers the possible advantages to be gained from varying the 

mutation rate. 

4.1 Changing the Mutation Rate 

Mutation within evolving systems is often viewed with ambivalence. While 

it is undoubtedly a good source of novelty, and in spite of the benefits it 

confers by contributing to population diversity, it nevertheless seems like a 

necessary evil; and it has been argued that populations will evolve mutation 

rates that are as low as possible (Drake 1991). But what is mutation? 

4.1.1 Mutation Considered 

Imagine a simple, evolutionary system with a fixed-size population and chro- 

mosome length. Consider a single locus (one bit position) on ýhe chromo- 

some: at any point in time the state of the population for that locus can be 

represented by the number of ones in that position within the population. 

Mutation in such a system can be thought of as a spring-like force, dragging 

the population back to a state of equal numbers of ones and zeros at all loci, 

with a force proportional to the number of ones at a given time, at each 
locus. 
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The standard definition of mutation is that it is a random change within 
a replicator. Although intra-generational genetic changes can occur, here the 

concentration is on mutation as a result of transcription errors. One of two 

consequences is possible from this definition of mutation: 

1. If the offspring are not replicators then mutation reduces to random 

search. 

2. With viable offspring and with some form of selective pressure, muta- 

tion provides the basis for evolutionary adaptation. 

So should mutation always be seen as an unwanted effect? It would seem 

that if the goal of a successful replicator is to maximise the number of copies 

of itself in the next generation then it should try to minimise its mutation 

rate. 

In a stable environment, it is true that the most successful replicators are 

those that produce the greatest numbers of copies of themselves, with the 

greatest copying fidelity. This is because the offspring will perform similarly 

to their parents, as the environment does not change significantly from gener- 

ation to generation. Yet it is known that some biological systems associated 

with dynamic environments maintain above-minimal mutation rates (May- 

nard Smith 1989, p. 184). An explanation for this is that, in these systems, 

increased mutation rates could be used by an organism to react to environ- 

mental change either within a generation or between generations. Care must 

be taken, when considering this explanation, as it is the gene and not the 

individual that is the fundamental unit of selection. 

It has also been shown that within an organism the mutation frequency 
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can vary by more than a thousand times from gene to gene. Why each gene 

has its own mutation rate is not known (Jones 1993, p. 87). Richard Moxon, 

a biologist from the John Radcliffe Hospital at Oxford University, believes 

that the 'hypermutable' genes generate useful biological noise at the cell 

surface (Brookes 1998, p. 39). He suggests that most genes perform basic 

'housekeeping' functions and have low mutation rates, whereas a limited 

set of hypermutable 'contingency' genes within the organism are selected to 

have high rates. The reasoning is that a mistake in a vital housekeeping gene 

may well be fatal, but mutations in contingency genes might add some form 

of genetic flexibility. However, this argument is based upon the advantage 

for an individual, not for a gene. Nevertheless, this raises an interesting 

related question: could a gene ever evolve that increases the mutation rate 

in another gene (or several other genes) to maximise the average fitness of 

its host's offspring in the next generation? 

So, could such a gene ever evolve to increase the mutation rate in other 

genes, and if so, under what conditions? Some work has been done on this 

question. Taddei, Radman, Maynard-Smith, Toupance, Gouyon & Godelle 

(1997) considered the role of mutator alleles - gene values that promote 

high mutation rates - in adaptive evolution and concluded that, within ever- 

changing environments, mutators can be maintained alongside antimutators 

(low mutation rate alleles) within the population by a process of 'hitch-hiking' 

(i. e. benefiting from the selective advantage of a neighbouring gene value). 

However, their model was based on asexual reproduction and did not support 

crossover. 

The work of Stephens, Garcia Olmedo, Mora Vargas & Waelbroeck (1998) 

is also relevant as they studied models which showed a rise in mutation 
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associated with a change in the environment. However, their model was 
primarily concerned with symmetry breaking and did not consider repeated 
environmental change. 

Other research related to dynamic mutation rates includes Bdck (1992), 

Nijssen & Bdck (2003) and Grefenstette (1999). While Bdck's work differs 

from other attempts in its use of bits within the individual's chromosome to 

encode the mutation rate, thus allowing it to adapt by selective advantage 

and consequently removing the need for the rate of mutation to be con- 

trolled externally, the work only considered static fitness landscapes and was 
designed to help with the application of GAs by removing the complication 

of determining the best mutation rate for a given problem. Grefenstette's 

work is the most similar to the research outlined in this thesis but his fo- 

cus is on 'hypermutation', i. e. randomly resetting an individual's genotype. 

However, like Bdck, he also prefers the self-adaptation of mutation rates to 

externally imposed heuristics. While Grefenstette correctly points out that 

GAs are expected to be well-suited to dynamic fitness landscapes, his fitness 

function is far more complicated than the one used in this thesis, consisting 

of hundreds of sub-optimal fitness peaks and one globally optimal peak all 

moving randomly over time. Grefenstette also highlights two different in- 

terpretations of mutation: that a mutated bit is either flipped - the most 

common interpretation within the GA literature; or that a mutated bit is 

reset at random - Holland's original interpretation (Holland 1975). In his 

work, Grefenstette uses the latter form of mutation. However, since a prob- 

ability of one that a bit is reset has the same effect as a probability of a half 

that it is flipped, the distinction, while important, is only one of magnitude. 

In this thesis, a mutated bit is flipped rather than reset. 
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The next few sections attempt to show, with the aid of some simple com- 

puter models, how increased mutation rates controlled by mutation genes can 

be advantageous within evolutionary systems with fast-paced environments 

and how this advantage can be harnessed within computer systems based on 

genetic algorithms. 

4.1.2 A Simple Model of Evolving Mutation Rates 

To test whether the increase in some observed populations' mutation rates 

is adaptive and associated with the speed of environmental change, a simple 

model was created. Each individual within the modelled population was 

represented by two integers: a phenotype value pE [0 
... 31], and a mutation 

rate mE [0 
... 7] (see Figure 4.1). The environment consisted of a normally 

distributed, dynamic fitness function fg, defined over all generations gC 

[0 
... 

), with a single optimum at fg*, where 

31 
Ef_q(p) 

= 32, and f-q(P) = fo(L(p+ kg) mod 32]) Vp, g. 
P=O 

A series of experiments was carried out using a variety of environmental 

speeds kE [1/4 1/2 ,0,1,2,4], in which a fixed-size population of 

several thousand individuals was monitored over many generations. 

The experiments all started with a uniformly random population. For 

every generation, the fitness of each individual, determined by its phenotype 

value, was used to calculate the number of offspring it produced, asexu- 

ally, in the next generation (i. e. fitness proportionate reproduction with no 

crossover). The phenotype values of the offspring were determined by their 
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Figure 4.1: Chromosome format and fitness function in a simple model of 
evolving mutation rates 

Fitness 

0 

... 7 O. Al 

Mutation Phenotype 
Rate 

parent's mutation rate: a rate of 0 produced clones, rates from 1 to 6 pro- 

duced phenotype values normally distributed around the parental phenotype 

with respectively increasing variance, and a rate of 7 produced offspring with 

uniformly random phenotype values. It should be noted that in this model 

the offspring inherited their parent's mutation rate - the mutation only af- 

fected the phenotype values of the offspring. 

Each experiment was repeated with fitness functions of different variance, 

representing progressively more forgiving environments - with a large vari- 

ance, the fitness distribution is flatter and an individual can achieve near 

optimal fitness, even when its phenotype is some distance from the opti- 

mum. Every generation was logically partitioned into sub-populations with 

equal mutation rates, and the size of each sub-population was recorded. The 

results from two experiments are shown in Figures 4.2 and 4.3. The source 

code and outputs can be found in Appendix E. 

As expected, the results showed that when an environment remains con- 

stant (k =0 and f, *+, =f *), selection favours the lowest possible mutation 9 
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Figure 4.2: Results from simple model with 'spike' fitness (zero variance) and 
with the optimum phenotype moving one step per generation (k = 1) 
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rate. For dynamic environments, the optimum depended solely on the speed 

of environmental change - as the variance of the fitness function was increased 

the only effect was an increase in the number of generations it took for the 

optimal sub-population(s) to dominate the population. The relationship be- 

tween the optimal mutation rate and the speed of environmental change is 

illustrated in Figure 4.4. 

The experiments described above were all based on a deterministic model. 

Each experiment was also run stochastically a number of times, using a ge- 

netic algorithm and 'roulette wheel' selection, in order to check that stochas- 

tic effects made no difference to the results. The only significant difference 

was that random drift ensured that there was only ever one dominant sub- 

population, even though the optimum mutation rate fell exactly between two 

sub-populations (cf. Figure 4.2). 
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Figure 4.3: Results from simple model with 'spike' fitness (zero variance) and 
with the optimum phenotype moving two steps per generation (k = 2) 
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These experiments have demonstrated that there is indeed a selective 

advantage for increased mutation rates within dynamic environments and 

that hitch-hiking is not necessarily the sole explanation for the maintenance 

of mutator alleles within some populations. 

4.1.3 A Simulation with Mutators 

Although the simple model of evolving mutation rates, described in Sec- 

tion 4.1.2 shows that there can exist a selective pressure for increased muta- 

tion rates, the model does not include two important, complicating factors: 

the effect that a mutator would have upon itself, and the effects of crossover 

within sexual populations. Consequently, a second model was created (see 

Appendix F). 
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Figure 4.4: Graph of optimal mutation rate against speed of environmental 
change in simple model with 'spike' fitness (zero variance) 
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A standard genetic algorithm was used in this second model, each indi- 

vidual being represented by a fixed-length bitstring. The first bit within each 

individual represented its mutation rate: a0 for a normal, low mutation rate 

(typically set at 0.001); and aI for a high mutation rate (typically set to 

be an order of magnitude greater than the low mutation rate). Unlike the 

previous model, this 'mute-boost' bit affected itself, so the probability of a 

mutator I bit mutating to an antimutator 0 bit was greater than the muta- 

tion probability in the other direction. The remaining bits in each individual 

represented its phenotype value. 

A series of experiments was carried out on populations ranging from a 

hundred individuals to many thousands, with bitstring lengths ranging from 

eight to eighty bits. Each experiment started with a uniformly random, initial 

population, from which the next generation was produced using standard 

roulette wheel reproduction, crossover and mutation; the mutation rate being 

determined by an individual's mutation rate bit. All the experiments were 

run twice, with mutation being applied either before or after crossover. It 
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was seen that the order in which these operators were applied did not affect 
the results. 

The experiments were designed to test the hypothesis that, when the fit- 

ness optimum moves a significant distance, the selective pressure for mutators 
should increase, particularly when a subset of their offspring fall within the 

neighbourhood of the new optimum. This is expected because of the shape of 
the fitness function: mutators near a tail of the fitness function will produce 

offspring with a greater mean fitness than will similar antimutators, due to 

the greater variance in the mutators' offspring phenotypes. The worst case 
for mutators would be a 'spike' fitness, since, unless they are close to the new 

optimum, their offspring will have the same fitness as the offspring of antimu- 

tators. However, random drift should ensure that the numbers of mutators 
in the population should rise significantly when the optimum moves, and 

should fall again when the new optimum is found. Also, since the variance 

of the phenotypes in the next generation is dependent upon the percentage 

of mutators within the current generation, and since a larger variance results 

in more phenotypes being tested, a rise in the number of mutators should 

reduce the time taken to find the new optimum. Consequently, the fitness 

function used in these experiments was a simple, oscillating, 'spike' fitness, 

in which the single optimum moved between two distant phenotypes once 

every k generations. A range of fitness values was tried, typically chosen so 

that the fitness optimum was an order of magnitude greater than the other 

fitness values. 

The population was monitored for many thousand generations and, for 

each generation, the percentage of mutators was recorded. As expected, the 

experimental results showed a rise in the number of mutators when the fitness 
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optimum moved, and a subsequent fall when the new optimum was found. 

The results from a typical experiment can be seen in Figure 4.5. 

Figure 4.5: Results for the simulation with mutators, with the fitness opti- 
mum changing every 2000 generations 
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In a fast-changing environment an allele for increased mutation can out- 

perform a low mutation allele in terms of reproductive success, even if it 

increases mutation within itself. This is because an increase in mutation 

increases the phenotype space sampled by the offspring of the individual 

carrying the high mutation allele (since the variance is greater) and conse- 

quently, in the absence of any significant selective pressure near the parent's 

phenotype, enlarging the sample space increases the chance of finding a new 

optimum, thereby raising the mean offspring fitness. 
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To apply this mechanism to genetic algorithms a simple modification is 

required. A single 'mute-boost' bit can be associated with each gene that 

contributes to the part of the phenotype affected by the dynamic fitness 

function. This bit will automatically raise the mutation rate when the se- 
lective pressure drops for that gene, and will lower it again when a new 

selective pressure emerges, thus improving the ability of the population to 

track the optima within fast-changing environments. This technique should 
help genetic algorithm systems keep up with fast-paced environments, allow- 
ing them to track or find the optima as they change across generations in 

environments in which, without this 'automutation' mechanism, they would 

randomly drift. 

It is natural to look for possible alternatives to mutation boosting to solve 

the problem of tracking fast-paced environments. However, since the problem 

is often a blind search for the new optima, standard search techniques based 

on hill-climbing are ineffective. Also, since the optima continue to change, the 

mutation generated random search is in general as effective as any ordered, 

exhaustive search. 

4.1.5 A New Type of Gene? 

Traditional 'selfish gene' descriptions of evolutionary adaptation (Dawkins 

1976, Maynard Smith & Szathmary 1995) centre on the selective pressures 

that tend to favour certain subsets of alleles from the genepool, resulting in an 

increase in frequency of selected alleles for each locus on the chromosome(s). 

1n other words, an allele which in some sense works well, on average, with 

the alleles at other loci in the current population should prosper. For this 
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to happen, i. e. for selective pressure to be present, the gene should affect 
the phenotype in some significant way. Introns are not subject to selective 

pressure as they do not (it is assumed) affect the phenotype, hence they are 

classed as 'junk DNA. ' 

In what way does a gene for replication accuracy, a 'mutation rate' gene, 

affect the phenotype? It certainly doesn't affect the current generation's phe- 

notype, and its only effect on the next generation is to alter the distribution 

of phenotypes' -a phenotypic meta-effect. Exons appear to thrive by solving 

problems that exist at an instant (in one particular generation). Genes such 

as Cmutation rate' genes - perhaps referred to as 'mexons' - appear to thrive 

by solving problems that only exist over an interval (a number of genera- 

tions). Genes that regulate mutation rate can be thought of as not related 

to the phenotype of the individual, but rather to the coefficient of related- 

ness between the individual and its offspring. This suggests that a different 

form of selective pressure exists within the chromosomes of individuals in 

fast changing environments. 

A consequence of this is a decrease in the likelihood of any advantage 

being conferred through kin selective cooperation in a fast changing environ- 

ment, as the emergence of mutator alleles automatically lowers the coefficient 

of relatedness between individuals, thus increasing the criterion for advanta- 

geous kin altruism on the right hand side of Hamilton's inequality. 

'Introns might be useful in a chromosome since, if they don't fall between two close 

genes they reduce the probability that crossover will occur between the genes, thus in- 

creasing the strength of the link between them. This suggestion has also been made by 

Nordin, Francone & Banzhaf (1996) with reference to genetic programs. 
2 For a unimodal fitness function and Gaussian mutation the effect of an increased 

mutation rate is to flatten the distribution. 
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4.1.6 An Alternative to Mutation 

Since mutation causes problems for cooperation based on kin selection, can 
it be replaced by an alternative process? One possibility is the addition of an 

alternative way of calculating the fitness value from whatever fitness function 

is being used. The concept is simple. Instead of using mutation during each 

generation of an evolving computer simulated population, randomly divide 

the current population at each generation into pairs and, when a 'Hamming 

bit' is set in the individual, calculate the sum of the bits resulting from an 

XOR operation on a pair (i. e. their Hamming distance). Scale this value 

and use it instead of the fitness function to provide the individual's fitness 

value. As with an increase in the mutation rate, this method increases the 

population diversity, but without the detrimental effects on kin selective 

cooperation. Section 4.2 compares this method with changing the mutation 

rate. 

4.2 Changing the Hamming Distance 

In a stable environment, where the most successful replicators in generation 

k are likely to be the most successful in generation k+1, it would appear 

that a high degree of conformity both within and between generations is de- 

sirable in evolving populations. In this way, the best (fittest) phenotype yet 

found is maximally exploited. This can be seen in GA populations where the 

increase in conformity is so rapid that it often results in premature conver- 

gence. Consequently, since the best yet found is not necessarily the global 

optimum, if one exists, some diversity is usually provided by mutation to 
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allow the population to explore the fitness landscape further (the crossover 

operator can also help with exploring the fitness landscape when a popula- 
tion is itself diverse but not when it has converged). Getting the balance 

right between exploring and exploiting is thus a matter of setting the correct 
level of mutation within the population. 

When the environment changes over time, Section 4.1 (also in Watson & 

Messer (1999)) has shown that the optimal level of mutation increases as the 

rate of environmental change increases. It was also shown that by including 

an 'automute' bit in every individual within a GA population, which boosts 

an individual's own mutation rate when set, the population maintained a 

low, mean mutation rate when the environment was stable and automati- 

cally raised the mean mutation rate when the environment changed. It was 

argued that this behaviour would enable an automute GA to outperform a 

standard GA at keeping track of fitness optima within a fast-changing envi- 

ronment, thus improving overall performance without any significant increase 

in algorithm complexity and without the need for any extra external control 

of the population. This section develops this self-adapting, mutation-based 

diversity approach by comparing the performance of both a standard GA 

and an automute GA within a simple model of a fast-changing environment 

and, more importantly, by also introducing an apparently equally effective 

method of controlling population diversity, based on the Hamming distance 

between pairs of individuals. It is argued that this 'autoham' GA is more 

suited to cooperative evolutionary systems since it does not rely on an in- 

crease in mutational 'noise' to provide an increase in diversity. 

Before comparing the performance of an autoham GA with that of an au- 

tomute GA, a comparison is made between a standard GA and an automute 
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GA to check that an automute GA can really outperform a standard GA at 
finding optima in fast-paced environments. The same program is then used 
to test the performance of an autoham GA. 

4.2.1 Mutation-Based Diversity Revisited 

A few definitions are needed before describing the experiment to compare 

the performance of a standard GA and an automute GA. The 'standard' GA 

used in this paper consists of a fixed-size population of 300 individuals per 

generation, each individual represented by a fixed-length bitstring (13 bits). 

The next generation was produced using roulette-wheel selection followed 

by one-point crossover of 70 per cent of the paired individuals and then 

each bit was mutated with a probability of either 0.001 or 0.002, depending 

on the experimental run. In the standard GA, the rightmost 12 bits were 

interpreted as representing a binary integer phenotype, the value of the first 

bit being ignored. An automute GA is identical to the standard GA except 

for the interpretation of the first bit: in an automute GA, when the first bit 

is set for an individual it will undergo mutation at a boosted rate. In the 

experiment the 'muteboost' factor was 5,10,20 or 50 times the base mutation 

rate, depending on the experimental run. 

To compare the performance of a standard GA and an automute GA, 

the simplest possible dynamic environment was chosen, consisting of a single 

optimum fitness of 20, all other phenotypes producing a fitness of one. At 

the start of an experimental run, the initial population was allowed to evolve 

until 95 per cent of the individuals had converged to the optimum. Then the 

optimum was moved to a distant phenotype and the number of generations 
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taken until 95 per cent of the population had converged on the new optimum 

was recorded. The optimum was then swapped back to its original position 

and the experiment continued, recording the number of generations taken 

until convergence. The optimum was swapped 500 times in each experimen- 

tal run and the mean number of generations taken to find the new optimum, 

together with the associated standard deviation, was calculated. The exper- 

imental design is surnmarised in Figure 4.6 and the source code and output 

is included in Appendix G. To cater for populations that failed to find the 

new optimum, an upper limit of 4000 generations was used: if a population 

failed to find the new optimum after 4000 generations then the optimum 

was swapped and the number of generations taken to find the optimum was 

recorded as 4000. 

Figure 4.6: Chromosome format and fitness function for an automute GA in 

a simple, dynamic environment 
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The design of the experimental fitness function was influenced by the work 

of van Nimwegen & Crutchfield (1999) who have shown that a metastable 

population, i. e. one that is temporarily 'stuck' at a suboptimal fitness, will 
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most likely reach a higher fitness by crossing an entropy barrier (a plateau 
in the fitness landscape) rather than a fitness barrier (a valley in the fitness 

landscape). Consequently, the experimental fitness landscape was designed 

so that the population has to cross a base fitness plateau to find the new 

optimum (cf. Grefenstette's fitness landscape (Grefenstette 1999)). 

The two positions for the optimum were chosen so as not to favour the 

autornute GA. Mutation acts on a population as a spring-like force, dragging 

each bit position away from the extrema of all ones or all zeros towards a 

state of half ones and half zeros. Crossover combines individuals from one 

generation into the next, resulting in a mutational bias towards individuals 

containing half ones and half zeros. Thus, the two positions for the optimum 

were chosen as follows: 

Optimum position A: 0100 0000 1001 
Optimum position B: 1101 0110 1111 

where the number of ones in position A is one quarter of the length of the 

phenotype and the number of ones in position B is three-quarters of the 

phenotype length (i. e. 3 and 9 out of 12 respectively). 

The experimental results are shown in Table 4.1. These results show 

that an automute GA outperforms a standard GA at keeping track of the 

fitness optimum - the automute GA needing approximately half the number 

of generations than the standard GA before the new optimum is found. It 

would appear that by adding a single bit to each individual and by modifying 

the mutation operation slightly, a standard GA's ability to track dynamic 

environments can be improved dramatically. 
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Table 4.1: Number of generations needed to find new optimum fitness in a 
simple, dynamic environment for both a standard GA and an automute GA 

Standard GA Automute GA 

Muterate Muteboost Mean Std. Dev. Mean Std. Dev. 

0.001 5 1163 1050 563 501 
10 

20 

50 

0.002 5 
10 

20 

50 

468 353 

528 512 

502 448 

544 473 

288 181 

266 168 

253 165 

266 189 

Mutation-Based Diversity and Cooperative Systems 

A consequence of increasing the mutation rate of an individual is that its 

offspring will become less like itself. If the individual is part of a cooperating 

population then increasing the mutation rate will tend to make the environ- 

ment more hostile towards cooperation. This is because the two main mech- 

anisms that produce cooperating populations - kin selection and reciprocal 

altruism (Hamilton 1964, Maynard Smith 1982b) - are both detrimentally 

affected by an increase in mutational 'noise'. 

Since GAs seem to be one of the few research areas in computer science 

that are suitable for developing cooperative systems in dynamic environments 

it would be helpful if a method for controlling diversity could be found that 

does not rely on increasing mutation rates. The next section outlines just 

such a method. 
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4.2.2 Frequency-Based Diversity 

Although controlling diversity by altering the rate of mutation is effective, 
it is not the only method. Previous work has been done on self-adaptive 
GAs that don't alter the mutation rate, for instance, Deb & Beyer (2001), 

who use simulated binary crossover. But, like many of the mutation-based 
approaches to diversity, the emphasis of the previous research has been on 
avoiding premature convergence (see Rudolph (1997) and Rudolph (2001)). 

So, what method could be used in place of mutation-based diversity to help 
GAs cope with fast-paced environments? 

It is well known that diversity is maintained in populations in which an 

individual's rarity confers a selective advantage. While it would be possible 
to keep statistics on the number of individuals with identical genotypes in 

any given population it would be too much of a computational burden. So 

a method of controlling diversity based on the frequency of occurrence of 

genes within a population, which does not require the maintenance of any 

global statistics, would offer a possible alternative to the mutation-based 

control of diversity within an automute GA. Such a method would also 

be preferable within cooperative systems as the population diversity would 

not be controlled by increasing the mutation rate. It is proposed that a 

modification of the fitness function to include a measure of the Hamming 

distance between two individuals will Provide such a frequency-based control 

of diversity. 
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Controlling Diversity with an Autoham GA 

Consider a change to an automute GA so that the setting of the first bit 
in an individual (now called the 'autoham' bit), rather than increasing the 

mutation rate, forces its fitness to be based on the Hamming distance between 
it and another randomly chosen individual from the population. As long as 
the maximum Hamming-based fitness is less than the environmental fitness 

function's optimum fitness, when the environment is stable the population 

would be expected to converge on the environmental optimum. Now, if the 

environment changes and the optimum moves, a mutated (rare) individual 

can gain a higher fitness if it is based on Hamming distance than if the 

autoham bit is not set and the environmental base fitness of one is assigned to 

it (assuming that it is not at the new optimum). Thus, it would be expected 
that the population would become dominated by autoham-on individuals 

until the new optimum is reached. However, the initial experimental results 
for this 'autoham' GA, using the same experimental design as before, were 

not promising. 

When the optimum had been found the population did indeed converge 

to almost all autoham-off individuals (mutation creating a few autoham-on 

individuals at random). And when the optimum was moved the population 

became dominated by autoham-on individuals. But they failed to find the 

new optimum within 4000 generations. It was conjectured that this was be- 

cause the population quickly evolved to a very stable state in which each 

individual was as far away (in terms of Hamming distance) from the others 

as possible. To reduce this effect it was decided to modify the interpretation 

of the autoham bit to mean that if it was set then there was a non-zero 
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probability (Hprob. ) that the individual's fitness would be based on Ham- 

ming distance rather than environmental fitness. Experimental runs were 
performed using this autoham GA with different values for the Hprob. value 

- the results are presented in Table 4.2 along with the best results for both 

the standard and automute GAs. 

Table 4.2: Number of generations needed to find new optimum fitness in a 
simple, dynamic environment for a standard, an automute and an autoham 
GA 

Standard GA Autornute GA Autoham GA 

Muterate Hprob. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

0.001 0.05 1163 1050 502 448 369 224 

0.1 346 172 

0.2 253 112 

0.5 232 136 

0.002 0.05 468 353 253 165 260 147 

0.1 240 108 

0.2 192 76 

0.5 212 139 

The experimental results suggest that an autoham GA not only outper- 

forms a standard GA at tracking the optimum in a fast-changing environment 

but that it also significantly outperforms an automute GA. Since the auto- 

ham GA does not suffer from the disadvantages associated with systems that 

increase the mutation rate, and since it only requires one extra bit per in- 

dividual and a slight change to the calculation of fitnesses, it would seem 

to be preferable to both standard and automute GAs for dynamic systems. 
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especially for cooperative systems. 

Since both automute and autoham bits improve the performance of GAs 

in fast-paced environments it seems natural to consider what effect might 

result from using both at the same time. This could be done by using two 
bits, or by reinterpreting a single bit, when set, to signify that the mutation 

rate for the individual is to be boosted and, simultaneously, that there is a 

probability greater than zero that it will use a fitness based on Hamming 

distance in place of the original fitness function. 

A further modification of interest would be to include a complement of one 

of the members of the population in each generation, thereby ensuring that 

there exists both a one and a zero at every locus in the current population. 

This would seem to be an easy way of 'kick starting' any increase in diversity 

when required. 

The experiments were performed again with the addition of two and one 

bit autoham and automute combined, and with the inclusion of a complemen- 

tary member for each generation. The results are summarised in Table 4.3. 

Appendix G contains both the source code and output. 

It would appear that the best combination is a single bit that controls 

both autornutation and autohamming with the addition of a complement. 

4.2.3 Summary of Results 

It has been shown that an automute, an autoham GA and a combined au- 

tomute and autoham GA can significantly outperform a standard GA at 
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Table 4.3: Comparison of the number of generations needed to find new 
optimum fitness in a simple, dynamic environment for GA systems with and 
without automute and autoham control bit(s) and complements 

GA System 

No Complement Complement 

Mean Std. Dev. Mean Std. Dev. 

Standard 484 407 188 112 
Automute 238 143 137 72 
Autoham 183 77 148 79 

Autornute & Autoham, 

two control bits 134 51 138 70 

Automute & Autoham, 

one control bit 81 46 71 45 

keeping track of the fitness optimum in a fast-changing environment. The 

autoham GA also benefits from not relying on an increase of the mutation rate 

to control population diversity, thereby making it more suitable for coopera- 

tive systems. Since neither technique requires the maintenance of any global 

statistics and since the extra computational load is minimal both techniques 

should be an improvement over standard GAs in dynamic environments. 

By including a complementary member into each generation the perfor- 

mance is further improved, again without any significant increase in compu- 

tational effort. 

Although the emphasis has been on introducing a single automute or 

autoham bit into each individual there is no reason why such a bit could not 

be attached to each gene in the chromosome. This bit would automatically 

raise the mutation rate or the Hamming fitness probability when the selective 
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pressure drops for that gene, and would lower it again when a new selective 

pressure emerges, thus producing gene-level control of the diversity within 
the population. However, while posing no problems for mutation, the way in 

which an autoham bit for a part of a chromosome would affect an individual's 

fitness is more difficult to define. It would probably require the use of a real- 

valued parameter that starts low and slowly increases across generations - 
an added complication that detracts from the simplicity of a global autoham 
bit. 

Lastly, whenever the relative performances of search algorithms are dis- 

cussed, a mention should be made of the 'No Free Lunch' theorem (Wolpert 

& Macready 1997). In their important paper, Wolpert & Macready state 

that, 

'Roughly speaking, we show that for both static and time- 

dependent optimization problems, the average performance of 

any pair of [search] algorithms across all possible problems is 

identical. ' 

Nevertheless, when the problem domain is restricted to fast-paced environ- 

ments, the modified GA systems described above do offer significantly better 

performance than a standard GA. 
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Chapter 5 

Stabilising Kin Selection 

It has been seen that both kin instability and fast-paced environments pose 

problems for cooperative systems. Chapter 4 has shown how the problem 

of fast-paced environments can be overcome. So how might kin selection be 

stabilised? 

In spite of the inherent instability of kin selection, stabilising it would 

seem to be straightforward in GA systems. Since the genotype is easily 

accessed for each individual, the destructive effects of kin mimics could be 

removed by identifying the bits associated with altruism and only allowing 

individuals to cooperate if their altruism bits match. However, in many 

systems the bits cannot be identified. For example, when GAs are used to 

evolve weights in artificial neural networks a sequence of bits determines the 

weight of a link, quite how it affects the behaviour of an artificial neural 

network is not apparent. 

Perhaps, by restricting cooperation to interactions between clones, co- 

operation could emerge and be maintained? This might work in a system 

that is not evolving but, in evolutionary systems, adaptation relies on the 
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differences produced by mutation and crossover. Any such restriction would 
destroy adaptation amongst cooperators, yet it is precisely the adaptation 
that is the attraction of evolutionary cooperative systems - the ability to 
evolve well-adapted cooperative solutions. What is needed is a way of sta- 
bilising kin selection without having to make kin mimicry impossible. But, 
before attempting to stabilise kin selection, it will be instructive to consider, 
in more detail, why it is unstable. 

5.1 An Analysis of Kin Selective Instability 

Consider a population large enough to be approximated by an infinite popu- 
lation. The population consists of two-bit strings where the first bit is a green 
beard gene and the second bit is a cooperate with green beards gene (for both 

genes, I= true). Note that 00 doesn't take part in any cooperation (a selfish 

genotype), 11 is a kin altruist and 10 is a kin mimic (a cheater). Let the 

proportions of the four different genotypes in the population be a, ý, -ý and 6 

for 00,01,10 and 11 respectively (a+ý+-y+J = 1), and let a>0 and 6>0. 

Then, the fitness function' for individual a when interacting with b is 

fita =2- (a = #1 Ab= 1#) + benefit(a = 1# Ab 

where # represents either a0 or aI- 

I This function represents a two-way interaction between a pair of individuals (a, b), 

equivalent to two interactions from the program in Section 3.2. However, in an infinite 

population that is randomly paired there will be as many (a, b) pairs as there are (b, a) 

pairs and so the fitness functions used here and previously are comparable. 
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