Location Privacy in VANETs: Provably Secure Anonymous Key Exchange Protocol Based on Self-Blindable Signatures

Date

2022-06-01

Advisors

Journal Title

Journal ISSN

ISSN

2214-210X

Volume Title

Publisher

Elsevier

Type

Article

Peer reviewed

Yes

Abstract

Security and privacy in vehicular ad hoc networks (VANETs) are challenging in terms of Intelligent Transportation Systems (ITS) features. The distribution and decentralisation of vehicles could threaten location privacy and confidentiality in the absence of trusted third parties (TTP)s or if they are otherwise compromised. If the same digital signatures (or the same certificates) are used for different communications, then adversaries could easily apply linking attacks. Unfortunately, most of the existing schemes for VANETs in the literature do not satisfy the required levels of security, location privacy, and efficiency simultaneously. This paper presents a new and efficient end-to-end anonymous key exchange protocol based on Yang et al. 's self-blindable signatures. In our protocol, vehicles first privately blind their own private certificates for each communication outside the mix-zone and then compute an anonymous shared key based on zero-knowledge proof of knowledge (PoK). The efficiency comes from the fact that once the signatures are verified, the ephemeral values in PoK are also used to compute a shared key through an authenticated Diffie-Hellman key exchange protocol. Therefore, the protocol does not require any further external information to generate a shared key. Our protocol also does not require an interference with the Roadside Units or Certificate Authorities, and hence can be securely run outside the mixed-zones. We demonstrate the security of our protocol in an ideal/real simulation paradigm. Hence, our protocol achieves secure authentication, forward unlinkability, and accountability. Furthermore, the performance analysis shows that our protocol is more efficient in terms of computational and communication overheads compared to existing schemes.

Description

open access article

Keywords

VANETs, Security, Privacy, Location privacy, Pseudonym change, Vehicle-to-vehicle

Citation

AlMarshoud, M. S., Al-Bayatti, A.H. and Kiraz, M.S. (2022) Location Privacy in VANETs: Provably Secure Anonymous Key Exchange Protocol Based on Self-Blindable Signatures. Vehicular Communications, 36, 100490

Rights

Research Institute