An evolutionary approach to multiparty multiobjective optimization problems with common Pareto optimal solutions
Date
Advisors
Journal Title
Journal ISSN
ISSN
DOI
Volume Title
Publisher
Type
Peer reviewed
Abstract
Somereal-world optimization problems involve multiple decision makers holding different positions, each of whom has multiple conflicting objectives. These problems are defined as multiparty multiobjective optimization problems (MPMOPs). Although evolutionary multiobjective optimization has been widely studied for many years, little attention has been paid to multiparty multiobjective optimization in the field of evolutionary computation. In this paper, a class of MPMOPs, that is, MPMOPs having common Pareto optimal solutions, is addressed. A benchmark for MPMOPs, obtained by modifying an existing dynamic multiobjective optimization benchmark, is provided, and a multiparty multiobjective evolutionary algorithm to find the common Pareto optimal set is proposed. The results of experiments conducted using the benchmark show that the proposed multiparty multiobjective evolutionary algorithm is effective.