Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Intravenously injected nanopharmaceuticals induce adverse cardiopulmonary reactions in sensitive human subjects and these reactions are reproducible in pigs. The underlying mechanisms are poorly understood, but a role for both the complement system and reactive macrophages has been implicated. Here we show the dominance and importance of early pulmonary intravascular macrophage clearance kinetics in adverse particle-mediated cardiopulmonary distress in pigs and irrespective of complement activation. Delaying particle recognition by macrophages within the first few minutes of injection overcome adverse reactions in pigs. This was achieved by two independent approaches: (i) changing particle geometry from a spherical shape (which trigger cardiopulmonary distress) to either rod- or disk-shape morphology and (ii) by physically adhering spheres to the surface of erythrocytes. These approaches bypasses particle surface engineering approaches to prevent robust macrophage recognition as well as the use of immunological or pharmacological modulators to reduce/overcome nanomedicine related adverse cardiopulmonary distress.