Three variants of three Stage Optimal Memetic Exploration for handling non-separable fitness landscapes
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Three Stage Optimal Memetic Exploration (3SOME) is a recently proposed algorithmic framework which sequentially perturbs a single solution by means of three operators. Although 3SOME proved to be extremely successful at handling high-dimensional multi-modal landscapes, its application to non-separable fitness functions present some flaws. This paper proposes three possible variants of the original 3SOME algorithm aimed at improving its performance on non-separable problems. The first variant replaces one of the 3SOME operators, namely the middle distance exploration, with a rotation-invariant Differential Evolution (DE) mutation scheme, which is applied on three solutions sampled in a progressively shrinking search space. In the second proposed mechanism, a micro-population rotation-invariant DE is integrated within the algorithmic framework. The third approach employs the search logic (1+1)-Covariance Matrix Adaptation Evolution Strategy, aka (1+1)-CMA-ES. In the latter scheme, a Covariance Matrix adapts to the landscape during the optimization in order to determine the most promising search directions. Numerical results show that, at the cost of a higher complexity, the three approaches proposed are able to improve upon 3SOME performance for non-separable problems without an excessive performance deterioration in the other problems.