A case study of image retrieval on lung cancer chest x-ray pictures.

dc.contributor.authorGile Narcisse Fanzou, T.
dc.contributor.authorNing, W.
dc.contributor.authorCindy, N.
dc.contributor.authorSiewe, Francois
dc.contributor.authorXudong, L.
dc.contributor.authorDe, X.
dc.date.accessioned2010-03-16T16:18:52Z
dc.date.available2010-03-16T16:18:52Z
dc.date.issued2008
dc.description.abstractThis paper presents a case study of an image retrieval system based on a notion of similarity between images in a multimedia database and where a user request can be an image file or a keyword. The CBIR (Content Based Image Retrieval) system, the current System of Search for Information (SSI) --e.g. PEIR, MIRC, MIR, IRMA, and Pathopic-- and the Current Search Engines (CSE) --e.g. Google, Yahoo and Alta Vista-- make image search possible only when the query is a keyword. This type of search is limited because keywords are not expressive enough to describe all important characteristics of an image. For example, an exact match request cannot be formulated in such systems and in SSI system, users should know natural language (e.g. English, French or German) used. We used XIRS (an XML Image Retrieval System) to set up a similarity distance between images, then to compare the request image with those in a database. An experimentation of XIRS on lung cancer diagnosis is presented. The statistics show that our system is more efficient than leading CBIR systems such as ERIC7, PEIR, PathoPic and CSE.
dc.identifier.citationGile Narcisse Fanzou, T. et al. (2008) A case study of image retrieval on lung cancer chest x-ray pictures. 9th International Conference on Signal Processing, ICSP 2008. pp. 924-927.en
dc.identifier.doihttps://doi.org/10.1109/ICOSP.2008.4697278
dc.identifier.isbn9781424421794
dc.identifier.urihttp://hdl.handle.net/2086/3561
dc.language.isoenen
dc.peerreviewedYesen
dc.publisherIEEEen
dc.researchgroupSoftware Technology Research Laboratory (STRL)en
dc.researchinstituteCyber Technology Institute (CTI)en
dc.subjectXML
dc.subjectimage retrieval
dc.subjectsimilarity search
dc.subjectdiagnosis
dc.subjectweb
dc.subjectmedical Information systems
dc.titleA case study of image retrieval on lung cancer chest x-ray pictures.en
dc.typeConferenceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
case study of image retrieval on lung cancer.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.25 KB
Format:
Item-specific license agreed upon to submission
Description: