Acceleration Techniques for Photo Realistic Computer Generated Integral Images

Date

2004-04

Advisors

Journal Title

Journal ISSN

ISSN

DOI

Volume Title

Publisher

De Montfort University

Type

Thesis or dissertation

Peer reviewed

Abstract

The research work presented in this thesis has approached the task of accelerating the generation of photo-realistic integral images produced by integral ray tracing. Ray tracing algorithm is a computationally exhaustive algorithm, which spawns one ray or more through each pixel of the pixels forming the image, into the space containing the scene. Ray tracing integral images consumes more processing time than normal images. The unique characteristics of the 3D integral camera model has been analysed and it has been shown that different coherency aspects than normal ray tracing can be investigated in order to accelerate the generation of photo-realistic integral images. The image-space coherence has been analysed describing the relation between rays and projected shadows in the scene rendered. Shadow cache algorithm has been adapted in order to minimise shadow intersection tests in integral ray tracing. Shadow intersection tests make the majority of the intersection tests in ray tracing. Novel pixel-tracing styles are developed uniquely for integral ray tracing to improve the image-space coherence and the performance of the shadow cache algorithm. Acceleration of the photo-realistic integral images generation using the image-space coherence information between shadows and rays in integral ray tracing has been achieved with up to 41 % of time saving. Also, it has been proven that applying the new styles of pixel-tracing does not affect of the scalability of integral ray tracing running over parallel computers. The novel integral reprojection algorithm has been developed uniquely through geometrical analysis of the generation of integral image in order to use the tempo-spatial coherence information within the integral frames. A new derivation of integral projection matrix for projecting points through an axial model of a lenticular lens has been established. Rapid generation of 3D photo-realistic integral frames has been achieved with a speed four times faster than the normal generation.

Description

Keywords

Citation

Rights

Research Institute

Collections