Implementation of analytic hierarchy process in evaluation of vulnerable critical oil and gas infrastructures to climate change impacts
Date
Advisors
Journal Title
Journal ISSN
ISSN
DOI
Volume Title
Publisher
Type
Peer reviewed
Abstract
The Niger Delta oil and gas infrastructures are under severe threat of climate change impacts exacerbated by frequent flood activities, rising temperature, surging Atlantic tides, persistent heavy rainfall, and windstorms. This requires sustainable adaptation mechanisms to cope with vulnerabilities, but experts are challenged with the scale of vulnerability and ability to prioritise adaptation responses according to system criticality. Through a systematic review and synthesise of criticality assessment criteria, this paper applied multiple input analytic hierarchy process (Mi-AHP) in prioritising the criticality of seven stratified vulnerable infrastructures to ease adaptation planning. The result indicates that oil terminals, flow stations and roads/bridges are most critical infrastructures with an EV value = 0.27, 0.19, and 0.15 respectively. The result further indicated that transformers/high voltage cables are the fourth most critical systems obtaining EV = 0.14 while Pipelines, loading bays and wellheads were ranked fifth, sixth, and seventh with EV = 0.11, 0.09 and 0.05. Accordingly, the study emphasised the need for sustainable and pragmatic adaptation planning leveraging the outcome of the study to effectively manage and reduce the vulnerability of climate change impacts on oil and gas infrastructures in the Niger Delta.