ARM-AMO: An Efficient Association Rule Mining Algorithm Based on Animal Migration Optimization
dc.cclicence | CC-BY-NC | en |
dc.contributor.author | Le Hoang, Son | en |
dc.contributor.author | Chiclana, Francisco | en |
dc.contributor.author | Kumar, Raghavendra | en |
dc.contributor.author | Mittal, Mamta | en |
dc.contributor.author | Khari, Manju | en |
dc.contributor.author | Chatterjee, Jyotir Moy | en |
dc.contributor.author | Baik, Sung Wook | en |
dc.date.acceptance | 2018-04-29 | en |
dc.date.accessioned | 2018-05-15T08:52:38Z | |
dc.date.available | 2018-05-15T08:52:38Z | |
dc.date.issued | 2018-05-10 | |
dc.description | The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link | en |
dc.description.abstract | Association rule mining (ARM) aims to find out association rules that satisfy predefined minimum support and confidence from a given database. However, in many cases ARM generates extremely large number of association rules, which are impossible for end users to comprehend or validate, thereby limiting the usefulness of data mining results. In this paper, we propose a new mining algorithm based on Animal Migration Optimization (AMO), called ARM-AMO, to reduce the number of association rules. It is based on the idea that rules which are not of high support and unnecessary are deleted from the data. Firstly, Apriori algorithm is applied to generate frequent itemsets and association rules. Then, AMO is used to reduce the number of association rules with a new fitness function that incorporates frequent rules. It is observed from the experiments that, in comparison with the other relevant techniques, ARM-AMO greatly reduces the computational time for frequent item set generation, memory for association rule generation, and the number of rules generated. | en |
dc.funder | N/A | en |
dc.identifier.citation | Son, L.H.. Chiclana, F., Kumar, R., Mittal, M., Khari, M., Chatterjee, J.M., Baik, S.W. (2018) ARM-AMO: An Efficient Association Rule Mining Algorithm Based on Animal Migration Optimization, Knowledge-Based Systems. | en |
dc.identifier.doi | https://doi.org/10.1016/j.knosys.2018.04.038 | |
dc.identifier.issn | 0950-7051 | |
dc.identifier.uri | http://hdl.handle.net/2086/16167 | |
dc.language.iso | en_US | en |
dc.peerreviewed | Yes | en |
dc.projectid | N/A | en |
dc.publisher | Elsevier | en |
dc.researchgroup | Centre for Computational Intelligence | en |
dc.researchinstitute | Institute of Artificial Intelligence (IAI) | en |
dc.subject | Association rules mining | en |
dc.subject | Animal Migration Optimization (AMO) | en |
dc.subject | Apriori algorithm | en |
dc.subject | Particle Swarm Optimization (PSO) | en |
dc.title | ARM-AMO: An Efficient Association Rule Mining Algorithm Based on Animal Migration Optimization | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- KNOSYS-D-17-01697R2.pdf
- Size:
- 1.12 MB
- Format:
- Adobe Portable Document Format
- Description:
- Author's copy of accepted paper.
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.2 KB
- Format:
- Item-specific license agreed upon to submission
- Description: