Unsupervised Learning-based Pulse Sequence Optimization framework for Magnetic Resonance Fingerprinting
dc.cclicence | CC-BY-NC | en |
dc.contributor.author | Li, Peng | |
dc.contributor.author | Zhang, Yinghao | |
dc.contributor.author | Lu, Xin | |
dc.contributor.author | Hu, Yue | |
dc.date.acceptance | 2023-02-15 | |
dc.date.accessioned | 2023-02-22T11:31:07Z | |
dc.date.available | 2023-02-22T11:31:07Z | |
dc.date.issued | 2023-02-13 | |
dc.description.abstract | The optimal design of the Magnetic resonance fingerprinting (MRF) sequence is still challenging due to the optimization of high-degrees-of-freedom acquisition parameters. In this paper, we propose a novel unsupervised learning-based pulse sequence design framework for efficient MRF sequence optimization. Specifically, we propose a novel pulse sequence generation network (PSG-Net) that fully exploits the sequence correlation to generate the optimal pulse sequence from a zero-initialized input. To achieve improved precision of parameter estimation, we use a predefined pulse sequence performance evaluation function that can directly represent tissue quantification separability as the loss function to update the parameters of the PSG-Net. | en |
dc.funder | Other external funder (please detail below) | en |
dc.funder.other | Nature Science Foundation of China | en |
dc.funder.other | Natural Science Foundation of Heilongjiang | en |
dc.identifier.citation | Li, P., Zhang, Y., Lu, X. and Hu, Y. (2023) Unsupervised Learning-based Pulse Sequence Optimization framework for Magnetic Resonance Fingerprinting. 2023 ISMRM & ISMRT Annual Meeting & Exhibition, Toronto, Canada, 03-08 June | en |
dc.identifier.uri | https://hdl.handle.net/2086/22519 | |
dc.language.iso | en | en |
dc.peerreviewed | Yes | en |
dc.projectid | NSFC 61871159 | en |
dc.projectid | YQ2021F005 | en |
dc.publisher | ISMRM & ISMRT | en |
dc.researchinstitute | Institute of Artificial Intelligence (IAI) | en |
dc.subject | Pulse Sequence Design | en |
dc.subject | MR Fingerprinting | en |
dc.title | Unsupervised Learning-based Pulse Sequence Optimization framework for Magnetic Resonance Fingerprinting | en |
dc.type | Conference | en |