Associative memory scheme for genetic algorithms in dynamic environments
dc.cclicence | N/A | en |
dc.contributor.author | Yang, Shengxiang | en |
dc.date.accessioned | 2017-03-14T16:44:50Z | |
dc.date.available | 2017-03-14T16:44:50Z | |
dc.date.issued | 2006 | |
dc.description.abstract | In recent years dynamic optimization problems have attracted a growing interest from the community of genetic algorithms with several approaches developed to address these problems, of which the memory scheme is a major one. In this paper an associative memory scheme is proposed for genetic algorithms to enhance their performance in dynamic environments. In this memory scheme, the environmental information is also stored and associated with current best individual of the population in the memory. When the environment changes the stored environmental information that is associated with the best re-evaluated memory solution is extracted to create new individuals into the population. Based on a series of systematically constructed dynamic test environments, experiments are carried out to validate the proposed associative memory scheme. The environmental results show the efficiency of the associative memory scheme for genetic algorithms in dynamic environments. | en |
dc.funder | N/A | en |
dc.identifier.citation | Yang, S. (2006) Associative memory scheme for genetic algorithms in dynamic environments. EvoWorkshops 2006: Applications of Evolutionary Computing, Lecture Notes in Computer Science, 3907, pp. 788-799 | en |
dc.identifier.uri | http://hdl.handle.net/2086/13589 | |
dc.language.iso | en_US | en |
dc.peerreviewed | Yes | en |
dc.projectid | N/A | en |
dc.publisher | Springer | en |
dc.researchgroup | Centre for Computational Intelligence | en |
dc.researchinstitute | Institute of Artificial Intelligence (IAI) | en |
dc.subject | Associative memory scheme | en |
dc.subject | Genetic algorithm | en |
dc.subject | Dynamic environments | en |
dc.title | Associative memory scheme for genetic algorithms in dynamic environments | en |
dc.type | Conference | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- EvoSTOC06Final.pdf
- Size:
- 265.45 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.2 KB
- Format:
- Item-specific license agreed upon to submission
- Description: