An empirical study of dynamic triobjective optimisation problems
Files
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Dynamic multiobjective optimisation deals with multiobjective problems whose objective functions, search spaces, or constraints are time-varying during the optimisation process. Due to wide presence in real-world applications, dynamic multiobjective problems (DMOPs) have been increasingly studied in recent years. Whilst most studies concentrated on DMOPs with only two objectives, there is little work on more objectives. This paper presents an empirical investigation of evolutionary algorithms for three-objective dynamic problems. Experimental studies show that all the evolutionary algorithms tested in this paper encounter performance degradedness to some extent. Amongst these algorithms, the multipopulation based change handling mechanism is generally more robust for a larger number of objectives, but has difficulty in deal with time-varying deceptive characteristics.