A new gaze points agglomerative clustering algorithm and its application in regions of interest extraction

Date

2014-02-21

Advisors

Journal Title

Journal ISSN

ISSN

Volume Title

Publisher

IEEE

Type

Conference

Peer reviewed

Yes

Abstract

In computer vision applications it is necessary to extract the regions of interest in order to reduce the search space and to improve image contents identification. Human-Oriented Regions of Interest can be extracted by collecting some feedback from the user. The feedback usually provided by the user by giving different ranks for the identified regions in the image. This rank is then used to adapt the identification process. Nowadays eye tracking technology is widely used in different applications, one of the suggested applications is by using the data collected from the eye-tracking device, which represents the user gaze points in extracting the regions of interest. In this paper we shall introduce a new agglomerative clustering algorithm which uses blobs extraction technique and statistical measures in clustering the gaze points obtained from the eye tracker. The algorithm is fully automatic, which means does not need any human intervention to specify the stopping criterion. In the suggested algorithm the points are replaced with small regions (blobs) then these blobs are grouped together to form a cloud, from which the interesting regions are constructed.

Description

Keywords

computer vision, feature extraction, pattern clustering, statistical analysis

Citation

Alazawi, M., Yang, Y. and Instance, H. (2014) A new gaze points agglomerative clustering algorithm and its application in regions of interest extraction. In Proceedings of the 2014 IEEE Advance Computing Conference (IACC), Gurgaon. pp. 946-951

Rights

Research Institute