MAC: A Multiclass Associative Classification Algorithm

Date

2012-06

Advisors

Journal Title

Journal ISSN

ISSN

0219-6492

Volume Title

Publisher

Type

Article

Peer reviewed

Abstract

Associative classification (AC) is a data mining approach that uses association rule discovery methods to build classification systems (classifiers). Several research studies reveal that AC normally generates higher accurate classifiers than classic classification data mining approaches such as rule induction, probabilistic and decision trees. This paper proposes a new multiclass AC algorithm called MAC. The proposed algorithm employs a novel method for building the classifier that normally reduces the resulting classifier size in order to enable end-user to more understand and maintain it. Experimentations against 19 different data sets from the UCI data repository and using different common AC and traditional learning approaches have been conducted with reference to classification accuracy and the number of rules derived. The results show that the proposed algorithm is able to derive higher predictive classifiers than rule induction (RIPPER) and decision tree (C4.5) algorithms and very competitive to a known AC algorithm named MCAR. Furthermore, MAC is also able to produce less number of rules than MCAR in normal circumstances (standard support and confidence thresholds) and in sever circumstances (low support and confidence thresholds) and for most of the data sets considered in the experiments.

Description

Keywords

associative classification, associative rule, data mining, rule learning

Citation

Abdelhamid, N., Ayesh, A., Thabtah, F. et al (2012), MAC: A Multiclass Associative Classification Algorithm. Journal of Information and Knowledge Management, 11 (2), pp. 1250011-1 - 1250011-10

Rights

Research Institute