Differential evolution based on local grid search for multimodal multiobjective optimization with local Pareto fronts

dc.contributor.authorZou, Juan
dc.contributor.authorXie, Tianbin
dc.contributor.authorDeng, Qi
dc.contributor.authorYu, Xiaozhong
dc.contributor.authorYang, Shengxiang
dc.contributor.authorZheng, Jinhua
dc.date.acceptance2024-04
dc.date.accessioned2024-05-20T12:15:59Z
dc.date.available2024-05-20T12:15:59Z
dc.date.issued2024-07
dc.description.abstractMultimodal multiobjective optimization problems (MMOPs) are characterized by multiple Pareto optimal solutions corresponding to the same objective vector. MMOPs with local Pareto fronts (MMOPLs) are common in the real world. However, existing multimodal multiobjective evolutionary algorithms (MMEAs) face significant challenges in finding both global and local Pareto sets (PSs) when dealing with MMOPLs. For this purpose, we propose a differential evolution algorithm based on local grid search, called LGSDE. LGSDE establishes a local grid region for each solution, achieving a balanced distribution by judging the dominant relationship only among solutions within that local region. This approach enables the population to converge towards both global and local PSs. We compare LGSDE with other state-of-the-art MMEAs. Experimental results demonstrate LGSDE exhibits superiority in addressing MMOPLs.
dc.funderOther external funder (please detail below)
dc.funder.otherNational Natural Science Foundation of China
dc.identifier.citationJuan Zou, Tianbin Xie, Qi Deng, Xiaozhong Yu, Shengxiang Yang, and Jinhua Zheng. (2024) Differential evolution based on local grid search for multimodal multiobjective optimization with local Pareto fronts. Proceedings of the 2024 Genetic and Evolutionary Computation Conference (GECCO ’24 Companion)
dc.identifier.doihttps://doi.org/10.1145/3638530.3654235
dc.identifier.urihttps://hdl.handle.net/2086/23798
dc.language.isoen
dc.peerreviewedYes
dc.projectid62176228, 62276224
dc.publisherACM
dc.researchinstituteInstitute of Artificial Intelligence (IAI)
dc.subjectMultimodal multiobjective optimization
dc.subjectlocal Pareto fronts
dc.subjectdifferential evolution
dc.subjectlocal grid search
dc.titleDifferential evolution based on local grid search for multimodal multiobjective optimization with local Pareto fronts
dc.typeConference

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
GECCO24-Paper1.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
Main text
No Thumbnail Available
Name:
GECCO24-Paper1-Supplement.pdf
Size:
7.14 MB
Format:
Adobe Portable Document Format
Description:
Supplementary Document
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.2 KB
Format:
Item-specific license agreed upon to submission
Description: