Experimental Investigation of Heat Exchange between Thermal Mass and Room Environments

Date

2012

Advisors

Journal Title

Journal ISSN

ISSN

DOI

Volume Title

Publisher

De Montfort University

Type

Thesis or dissertation

Peer reviewed

Abstract

The different technologies of passive cooling concepts have to rely on a good thermal coupling between a building’s thermal mass and indoor air. In many cases, the ceiling is the only surface remaining for a good coupling. Further research is necessary to investigate discrepancies between existing correlations. Therefore, the overall aim of the work described in this thesis is the investigation of heat transfer at a heated ceiling in an experimental chamber.

Acoustic baffles obstruct the surface of the ceiling and impede heat transfer. However, there is nearly no published data about the effect of such baffles on heat transfer. Available results from simulations should be verified with an experimental investigation. Consequently, one of the primary aims of this work was to experimentally determine the influence of such acoustic baffles. A suitable experimental chamber has been built at Biberach University of Applied Sciences. The thesis describes the experimental chamber, the experimental programme as well as results from five different test series.

With a value of ±0.1W/(m² K) for larger temperature differences, uncertainty in resulting convective heat transfer coefficients for natural convection is comparable to that of results from an existing recent experimental work often recommended for use. Additionally, total heat transfer (by convection and radiation) results are presented. Results are given for natural, forced and mixed convection conditions at an unobstructed heated ceiling. Furthermore, results for acoustic baffles in both an unventilated and a ventilated chamber are shown. Natural convection results show a very good agreement with existing correlations. Under mixed convection conditions, convective heat transfer at an unobstructed ceiling decreases to the limiting case described by natural convection. Installation of acoustic baffles leads to a reduction in total heat transfer (convection and radiation) between 20% and 30% when compared to the case of an unobstructed ceiling.

Description

Keywords

experimental investigation, acoustic baffles, ceiling, heat transfer, radiation, convection, convective heat transfer coefficient, CHTC, natural, mixed, forced, correlation, facility, chamber, Biberach University of Applied Sciences

Citation

Rights

Research Institute

Collections