A fully fuzzified data envelopment analysis model

Date

2011

Advisors

Journal Title

Journal ISSN

ISSN

Volume Title

Publisher

Inderscience

Type

Article

Peer reviewed

Yes

Abstract

In the conventional data envelopment analysis (DEA), all the data assumes the form of crisp numerical values. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Some researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA by constructing linear programming (LP) models with 'partial' fuzzy parameters. The main purpose of this study is to evaluate the performance of a set of decision making units (DMUs) in a fully fuzzified environment. We propose a novel fully fuzzified DEA (FFDEA) model by utilising a fully fuzzified LP (FFLP) model, where all decision parameters and variables are fuzzy numbers. The contribution of this paper is threefold: first, we consider ambiguous, uncertain and imprecise input and output data in DEA; second, we address the gap in the fuzzy DEA literature for solutions to fully fuzzified problems; and third, we present a numerical example to demonstrate the applicability and efficacy of the proposed model.

Description

Keywords

Data envelopment analysis, Fuzzy decision parameters, Fuzzy Linear Programming, Fuzzy variables

Citation

Hatami-Marbini, A., Tavana, M. and Ebrahimi, A. (2011) A fully fuzzified data envelopment analysis model. International Journal of Information and Decision Sciences (IJIDS), 3 (3)

Rights

Research Institute