A Bioinspired Feature-Projection-Based Approach to Electromyographic Pattern Recognition for High Dimensional Sparse Sensor Data

Date

2016-07-21

Advisors

Journal Title

Journal ISSN

ISSN

Volume Title

Publisher

IEEE

Type

Conference

Peer reviewed

Yes

Abstract

Abstract: The paper presents an electromyographic pattern recognition for sensor fusion able to discern motions of hand with a small number of training samples. We propose a learning algorithm able to classify estimate class statistics from a limited training set size. A Wavelet Packet Decomposition performs feature extraction. A sparse Principal Component Analysis projects the features in a lower dimensionality space. Classification is performed through multi-layer Perceptron. We employed sparse Principal Component Analysis because it is insensitive to the curse dimensionality problem differently from standard Principal Component Analysis that fails to capture discriminatory information in low-variance sensor data. The approach mitigates drawbacks of the training data collection as time consumption and acquisition difficulties. The latter are particularly relevant in case of high degrees of user disability, in which long sessions of training become unfeasible due to stress and exertion.

Description

Keywords

wavelet packet transform (WPT), Electromyographic (EMG), sparse principal component analysis, pattern recognition

Citation

Schiboni, G. et al. (2016) A Bioinspired Feature-Projection-Based Approach to Electromyographic Pattern Recognition for High Dimensional Sparse Sensor Data. Proceeding of UIC-ATC-ScalCom-CBDCom-IoP 2015, pp.1706-1711

Rights

Research Institute