Strategic Weight Manipulation in Multiple Attribute Decision Making in an Incomplete Information Context
Date
2017-08-24
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
IEEE Xplore
Type
Conference
Peer reviewed
Yes
Abstract
In some real-world multiple attribute decision making (MADM) problems, a decision maker can strategically set attribute weights to obtain her/his desired ranking of alternatives, which is called the strategic weight manipulation of the MADM. Sometimes, the attribute weights are given with imprecise or partial information, which is called incomplete information of attribute weights. In this study, we propose the strategic weight manipulation under incomplete information on attributes weights. Then, a series of mixed 0-1 linear programming models (MLPMs) are proposed to derive a strategic weight vector for a desired ranking of an alternative. Finally, a numerical example is used to demonstrate the validity of our models.
Description
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
Keywords
multiple attribute decision making, strategic weight manipulation, ranking, incomplete information
Citation
Liu, Y. et al. (2017) Strategic Weight Manipulation in Multiple Attribute Decision Making in an Incomplete Information Context. Proceedings of FUZZ-IEEE 2017,