A Knowledge-Driven Approach to Activity Recognition in Smart Homes

Date

2012-06

Advisors

Journal Title

Journal ISSN

ISSN

1041-4347

Volume Title

Publisher

IEEE

Type

Article

Peer reviewed

Yes

Abstract

This paper introduces a knowledge-driven approach to real-time, continuous activity recognition based on multisensor data streams in smart homes. The approach goes beyond the traditional data-centric methods for activity recognition in three ways. First, it makes extensive use of domain knowledge in the life cycle of activity recognition. Second, it uses ontologies for explicit context and activity modeling and representation. Third and finally, it exploits semantic reasoning and classification for activity inferencing, thus enabling both coarse-grained and fine-grained activity recognition. In this paper, we analyze the characteristics of smart homes and Activities of Daily Living (ADL) upon which we built both context and ADL ontologies. We present a generic system architecture for the proposed knowledge-driven approach and describe the underlying ontology-based recognition process. Special emphasis is placed on semantic subsumption reasoning algorithms for activity recognition. The proposed approach has been implemented in a function-rich software system, which was deployed in a smart home research laboratory. We evaluated the proposed approach and the developed system through extensive experiments involving a number of various ADL use scenarios. An average activity recognition rate of 94.44 percent was achieved and the average recognition runtime per recognition operation was measured as 2.5 seconds.

Description

Keywords

Context, Context modeling, Ontologies, Data models, Cognition, Monitoring, Semantics

Citation

Chen, L., Nugent, C.D., Wang, H. (2012) A Knowledge-Driven Approach to Activity Recognition in Smart Homes, IEEE Transactions on Knowledge and Data Engineering, 24(6), pp.961-974.

Rights

Research Institute