Objective selection of minimum acceptable mesh refinement for electromagnetic simulation
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Optimization of computational electromagnetics (EM) simulation models can be costly in both time and computing resource. Mesh refinement is a key parameter in determining the number of unknowns to be processed, which, in turn, controls the time and memory required. Hence, it is important to use only a mesh that is good enough for the objectives of the simulation. This might be for direct handling of high-fidelity EM models or, even more importantly, for setting up low-fidelity models in variable-fidelity optimization. On the other hand, in the early stages of an optimization process, a relatively coarse mesh can show whether the governing parameters of the simulation are being appropriately modeled. As the simulation geometry approaches its target, then so to can the mesh definition become more refined. This paper presents an approach to identify the minimum acceptable mesh coarseness based on the projected evolution of FSV’s Global Difference Measure as a model is refined from a very crude representation. Our approach is demonstrated using two examples of antenna structures.