Efficient sparse representation for learning in high-dimensional data

Date

2021-10

Advisors

Journal Title

Journal ISSN

ISSN

2162-2388

Volume Title

Publisher

IEEE Press

Type

Article

Peer reviewed

Yes

Abstract

Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact in several fields, such as image processing, computer vision and pattern recognition. Learning sparse representations is often computationally expensive due to the iterative computations needed to solve convex optimization problems in which the number of iterations is unknown before convergence. Moreover, most sparse representation algorithms focus only on determining the final sparse representation results and ignore the changes in the sparsity ratio during iterative computations. In this paper, two algorithms are proposed to learn sparse representations based on locality-constrained linear representation learning with probabilistic simplex constraints. Specifically, the first algorithm, called approximated local linear representation (ALLR), obtains a closed-form solution from individual locality-constrained sparse representations. The second algorithm, called approximated local linear representation with symmetric constraints (ALLRSC), further obtains all symmetric sparse representation results with a limited number of computations; notably, the sparsity and convergence of sparse representations can be guaranteed based on theoretical analysis. The steady decline in the sparsity ratio during iterative computations is a critical factor in practical applications. Experimental results based on public datasets demonstrate that the proposed algorithms perform better than several state-of-the-art algorithms for learning with high-dimensional data.

Description

The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.

Keywords

Sparse representation, linear representation, low-dimensional structures, probabilistic simplex

Citation

Chen, J., Yang, S., Wang, Z. and Mao, H. (2021) Efficient sparse representation for learning in high-dimensional data. IEEE Transactions on Neural Networks and Learning Systems.

Rights

Research Institute