Type-2 fuzzy sets: geometric defuzzification and type-reduction

dc.contributor.authorCoupland, Simonen
dc.date.accessioned2008-11-24T13:24:16Z
dc.date.available2008-11-24T13:24:16Z
dc.date.issued2007-02-01en
dc.descriptionThis paper presents the geometric defuzzifier for general type-2 fuzzy sets. This novel method has the potential to transform the fuzzy control paradigm. General type-2 fuzzy logic is better able to model noise and uncertainty but suffers from the massive computational cost of defuzzification. This paper uses geometry to eliminate this problem, paving the way for general type-2 fuzzy control. This paper was shortlisted for the best paper award at this prestigious international conference.en
dc.identifier.citationCoupland, S. (2007) Type-2 fuzzy sets: geometric defuzzification and type-reduction. Proceedings of IEEE Symposium on Foundations of Computational Intelligence, pp. 622-629.
dc.identifier.doihttps://doi.org/10.1109/foci.2007.371537
dc.identifier.isbn1424407036
dc.identifier.urihttp://hdl.handle.net/2086/190
dc.language.isoenen
dc.researchgroupCentre for Computational Intelligence
dc.researchinstituteInstitute of Artificial Intelligence (IAI)en
dc.subjectRAE 2008
dc.subjectUoA 23 Computer Science and Informatics
dc.subjectgeometric defuzzifier
dc.titleType-2 fuzzy sets: geometric defuzzification and type-reductionen
dc.typeOtheren

Files