Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation

dc.cclicenceCC-BY-NCen
dc.contributor.authorAhmad, Z.en
dc.contributor.authorSayed, E.en
dc.contributor.authorKaravasili, Chirstinaen
dc.contributor.authorRuparelia, K. C.en
dc.contributor.authorHaj-Ahmad, R.en
dc.contributor.authorCharalambopoulou, Gen
dc.contributor.authorGiasafaki, D.en
dc.contributor.authorCox, Paulen
dc.contributor.authorSingh, Neenuen
dc.contributor.authorGiassafaki, Lefki-Pavlina N.en
dc.contributor.authorMpenekou, A.en
dc.contributor.authorSteriotis, T.en
dc.contributor.authorMarkopoulou, C. K.en
dc.contributor.authorVizirianakis, I. S.en
dc.contributor.authorChang, Ming-Weien
dc.contributor.authorFatoutos, D. G.en
dc.date.acceptance2018-03-26en
dc.date.accessioned2018-04-04T08:30:23Z
dc.date.available2018-04-04T08:30:23Z
dc.date.issued2018-03-30
dc.descriptionopen access article
dc.description.abstractEncapsulation of poorly water-soluble drugs into mesoporous materials (e.g. silica) has evolved as a favorable strategy to improve drug solubility and bioavailability. Several techniques (e.g. spray drying, solvent evaporation, microwave irradiation) have been utilized for the encapsulation of active pharmaceutical ingredients (APIs) into inorganic porous matrices. In the present work, a novel chalcone (KAZ3) with anticancer properties was successfully synthesized by Claisen-Schmidt condensation. KAZ3 was loaded into mesoporous (SBA-15 and MCM-41) and non-porous (fumed silica, FS) materials via two techniques; electrohydrodynamic atomization (EHDA) and solvent impregnation. The effect of both loading methods on the physicochemical properties of the particles (e.g. size, charge, entrapment efficiency, crystallinity, dissolution and permeability) was investigated. Results indicated that EHDA technique can load the active in a complete amorphous form within the pores of the silica particles. In contrast, reduced crystallinity (~79%) was obtained for the solvent impregnated formulations. EHDA engineered formulations significantly improved drug dissolution up to 30-fold, compared to the crystalline drug. Ex vivo studies showed EHDA formulations to exhibit higher permeability across rat intestine than their solvent impregnated counterparts. Cytocompatibility studies on Caco-2 cells demonstrated moderate toxicity at high concentrations of the anticancer agent. The findings of the present study clearly show the immense potential of EHDA as a loading technique for mesoporous materials to produce poorly water-soluble API carriers of high payload at ambient conditions. Furthermore, the scale up potential in EHDA technologies indicate a viable route to enhance drug encapsulation and dissolution rate of loaded porous inorganic materials.en
dc.explorer.multimediaNoen
dc.funderEgyptian Culture Centre and the Educational Bureau in London for funding the research. The authors would also like to thank the EPSRC (EPSRC EHDA Network) for their support.en
dc.identifier.citationSayed, E. et al., 2018. Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. Journal of Controlled Release, 278, pp. 142-155en
dc.identifier.doihttps://doi.org/10.1016/j.jconrel.2018.03.031
dc.identifier.urihttp://hdl.handle.net/2086/15718
dc.language.isoenen
dc.peerreviewedYesen
dc.projectidEPSRC EHDA Network and Egyptian Culture Centre and the Educational Bureauen
dc.publisherElsevieren
dc.researchgroupPharmaceutical Technologiesen
dc.researchinstituteLeicester Institute for Pharmaceutical Innovation - From Molecules to Practice (LIPI)en
dc.subjectMesoporous silica, chalcones, electrohydrodynamic atomization, electrospraying, poor solubility, ex vivo, molecular modelling, cytocompatibilityen
dc.titleElectrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluationen
dc.typeArticleen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
JCR.pdf
Size:
3.38 MB
Format:
Adobe Portable Document Format
Description:
Manuscript
Loading...
Thumbnail Image
Name:
JCRSI.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format
Description:
SI Material
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.2 KB
Format:
Item-specific license agreed upon to submission
Description: