Pressure, leakage and energy management in water distribution systems

dc.contributor.authorAbdelMeguid, Hossam Saadeldin
dc.date.accessioned2011-04-21T08:41:15Z
dc.date.available2011-04-21T08:41:15Z
dc.date.issued2011
dc.description.abstractA fast and efficient method to calculate time schedules for internal and boundary PRVs and flow modulation curves has been developed and implemented. Both time and flow modulation can be applied to a single inlet DMA. The time modulation methodology is based on solving a nonlinear programming problem (NLP). In addition, Genetic Algorithms (GA) has been proposed and investigated to calculate the optimal coefficients of a second order relationship between the flow and the outlet pressure for a PRV to minimize the background leakage. The obtained curve can be subsequently implemented using a flow modulation controller in a feedback control scheme. The Aquai-Mod® is a hydraulic device to control and modulate the outlet pressure of a PRV according to the valve flow. The controller was experimentally tested to assess its performance and functionality in different conditions and operating ranges. The mathematical model of the controller has been developed and solved, in both steady state and dynamic conditions. The results of the model have been compared with the experimental data and showed a good agreement in the magnitude and trends. A new method for combined energy and pressure management via integration and coordination of pump scheduling with pressure control aspects has been created. The method is based on formulating and solving an optimisation NLP problem and involves pressure dependent leakage. The cost function of the optimisation problem represents the total cost of water treatment and pumping energy. Developed network scheduling algorithm consists of two stages. The first stage involves solving a continuous problem, where operation of each pump is described by continuous variable. Subsequently, the second stage continuous pump schedules are discretised using heuristic algorithm. Another area of research has been developing optimal feedback rules using GA to control the operation of pump stations. Each pump station has a rule described by two water levels in a downstream reservoir and a value of pump speed for each tariff period. The lower and upper water switching levels of the downstream reservoir correspond to the pump being “ON” or “OFF”. The achieved similar energy cost per 1 Ml of pumped water. In the considered case study, the optimal feedback rules had advantage of small number of ON/OFF switches, which increase the pump stations lifetime and reduce the maintenance cost as well.en
dc.identifier.urihttp://hdl.handle.net/2086/4905
dc.language.isoenen
dc.publisherDe Montfort Universityen
dc.publisher.departmentFaculty of Technologyen
dc.subjectpressure managementen
dc.subjectleakage controlen
dc.subjectoptimal boundary and internal PRV settingen
dc.subjectoptimal boundary PRV flow modulation curveen
dc.subjectPRV Hydraulic controlleren
dc.subjectoptimal pump schedulingen
dc.subjectoptimal pump feedback rulesen
dc.titlePressure, leakage and energy management in water distribution systemsen
dc.typeThesis or dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhDen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhD_Thesis.pdf
Size:
5.35 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.18 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections