A Hybrid Approach to Sentiment Analysis
Date
2016
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
IEEE
Type
Conference
Peer reviewed
Yes
Abstract
This contribution presents a hybrid approach to Sentiment Analysis (SA) encompassing the use of semantic rules, fuzzy sets, unsupervised machine learning techniques and a sentiment lexicon improved with the support of Senti-WordNet. A Hybrid Standard Classification is first carried out, which is further enhanced into a Hybrid Advanced approach incorporating linguistic classification of semantic polarity modelled using fuzzy sets. The mechanism of the new SA methodology is illustrated by applying it to compute the polarity of a given sentence and to a benchmarking publicly available dataset: the Movie Review Dataset.
Description
Keywords
Citation
Appel, O., Chiclana, F., Carter, J. and Fujita, H. (2016) A Hybrid Approach to Sentiment Analysis. Accepted for presentation at the IEEE CEC 2016 (WCCI 2016)