A proportion-based selection scheme for multi-objective optimization
Files
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Classical multi-objective evolutionary algorithms (MOEAs) have been proven to be inefficient for solving multiobjective optimizations problems when the number of objectives increases due to the lack of sufficient selection pressure towards the Pareto front (PF). This poses a great challenge to the design of MOEAs. To cope with this problem, researchers have developed reference-point based methods, where some well-distributed points are produced to assist in maintaining good diversity in the optimization process. However, the convergence speed of the population may be severely affected during the searching procedure. This paper proposes a proportion-based selection scheme (denoted as PSS) to strengthen the convergence to the PF as well as maintain a good diversity of the population. Computational experiments have demonstrated that PSS is significantly better than three peer MOEAs on most test problems in terms of diversity and convergence.