Enhanced Collision Resolution for the IEEE 802.11 Distributed Coordination Function

Date

2018-11

Advisors

Journal Title

Journal ISSN

ISSN

DOI

Volume Title

Publisher

De Montfort University

Type

Thesis or dissertation

Peer reviewed

Abstract

The IEEE 802.11 standard relies on the Distributed Coordination Function (DCF) as the fundamental medium access control method. DCF uses the Binary Exponential Backoff (BEB) algorithm to regulate channel access. The backoff period determined by BEB depends on a contention window (CW) whose size is doubled if a station suffers a collision and reset to its minimum value after a successful transmission.

BEB doubles the CW size upon collision to reduce the collision probability in retransmission. However, this CW increase reduces channel access time because stations will spend more time sensing the channel rather than accessing it. Although resetting the CW to its minimum value increases channel access, it negatively affects fairness because it favours successfully transmitting stations over stations suffering from collisions. Moreover, resetting CW leads to increasing the collision probability and therefore increases the number of collisions. % Quality control editor: Please ensure that the intended meaning has been maintained in the edits of the previous sentence.

Since increasing channel access time and reducing the probability of collisions are important factors to improve the DCF performance, and they conflict with each other, improving one will have an adverse effect on the other and consequently will harm the DCF performance.

We propose an algorithm, \gls{ECRA}, that solves collisions once they occur without instantly increasing the CW size. Our algorithm reduces the collision probability without affecting channel access time. We also propose an accurate analytical model that allows comparing the theoretical saturation and maximum throughputs of our algorithm with those of benchmark algorithms. Our model uses a collision probability that is dependent on the station transmission history and thus provides a precise estimation of the probability that a station transmits in a random timeslot, which results in a more accurate throughput analysis.

We present extensive simulations for fixed and mobile scenarios. The results show that on average, our algorithm outperformed BEB in terms of throughput and fairness. Compared to other benchmark algorithms, our algorithm improved, on average, throughput and delay performance.

Description

Keywords

Citation

Rights

Research Institute

Collections