Hybrid Multi-Agent Architecture: Heuristics Generation for Solving NP-hard problems
dc.contributor.author | Alratrout, Serein Abdelmonam. | en |
dc.contributor.author | Siewe, Francois | en |
dc.date.accessioned | 2013-03-11T16:58:27Z | |
dc.date.available | 2013-03-11T16:58:27Z | |
dc.date.issued | 2010 | |
dc.description.abstract | Current research on multi-agent systems (MAS) has become mature enough to be applied as a technology for solving problems in an increasingly wide range of complex applications. This research has been undertaken to investigate the feasibility of running computationally intensive algorithms on multi-agent architectures while preserving the ability of small agents to run on small devices. To achieve this, the present work proposes a new Hybrid Multi-Agent Architecture (HMAA) that generates new heuristics for solving NP-hard problems. This architecture is hybrid because it is "semi-distributed/semi-centralised" architecture where variables and constraints are distributed among small agents exactly as in distributed architectures, but when the small agents become stuck, a centralised control becomes active where the variables are transferred to a super agent, that has a central view of the whole system, and possesses much more computational power and intensive algorithms to generate new heuristics for the small agents, which find optimal solution for the specified problem. | en |
dc.identifier.citation | Al-Ratrout, S. and Siewe, F. (2010) Hybrid Multi-Agent Architecture: Heuristics Generation for Solving NP-hard problems, LAP LAMBERT Academic Publishing | en |
dc.identifier.isbn | 9783838375137 | |
dc.identifier.uri | http://hdl.handle.net/2086/8260 | |
dc.language.iso | en | en |
dc.publisher | LAP Lambert Academic Publishing | en |
dc.researchgroup | Software Technology Research Laboratory (STRL) | en |
dc.researchinstitute | Cyber Technology Institute (CTI) | en |
dc.title | Hybrid Multi-Agent Architecture: Heuristics Generation for Solving NP-hard problems | en |
dc.type | Book | en |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.18 KB
- Format:
- Item-specific license agreed upon to submission
- Description: