Hybrid Multi-Agent Architecture: Heuristics Generation for Solving NP-hard problems

Date

2010

Advisors

Journal Title

Journal ISSN

ISSN

DOI

Volume Title

Publisher

LAP LAMBERT Academic Publishing

Type

Book

Peer reviewed

Abstract

Current research on multi-agent systems (MAS) has become mature enough to be applied as a technology for solving problems in an increasingly wide range of complex applications. This research has been undertaken to investigate the feasibility of running computationally intensive algorithms on multi-agent architectures while preserving the ability of small agents to run on small devices. To achieve this, the present work proposes a new Hybrid Multi-Agent Architecture (HMAA) that generates new heuristics for solving NP-hard problems. This architecture is hybrid because it is "semi-distributed/semi-centralised" architecture where variables and constraints are distributed among small agents exactly as in distributed architectures, but when the small agents become stuck, a centralised control becomes active where the variables are transferred to a super agent, that has a central view of the whole system, and possesses much more computational power and intensive algorithms to generate new heuristics for the small agents, which find optimal solution for the specified problem.

Description

Keywords

Citation

Al-Ratrout, S. and Siewe, F. (2010) Hybrid Multi-Agent Architecture: Heuristics Generation for Solving NP-hard problems, LAP LAMBERT Academic Publishing

Rights

Research Institute