Combining Supervised and Unsupervised Learning to Discover Emotional Classes
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Most previous work in emotion recognition has fixed the available classes in advance, and attempted to classify samples into one of these classes using a supervised learning approach. In this paper, we present preliminary work on combining supervised and unsupervised learning to discover potential latent classes which were not initially considered. To illustrate the potential of this hybrid approach, we have used a Self-Organizing Map (SOM) to organize a large number of Electroencephalogram (EEG) signals from subjects watching videos, according to their internal structure. Results suggest that a more useful labelling scheme could be produced by analysing the resulting topology in relation to user reported valence levels (i.e., pleasantness) for each signal, refining the original set of target classes.