Interval Type-2 Defuzzification Using Uncertainty Weights

dc.cclicenceCC-BY-NCen
dc.contributor.authorCoupland, Simonen
dc.contributor.authorRunkler, Thomasen
dc.contributor.authorJohn, Robert, 1955-en
dc.contributor.authorChen, Chaoen
dc.date.acceptance2017-09-27en
dc.date.accessioned2017-11-02T09:27:55Z
dc.date.available2017-11-02T09:27:55Z
dc.date.issued2017-09-27
dc.description.abstractOne of the most popular interval type–2 defuzzification methods is the Karnik–Mendel (KM) algorithm. Nie and Tan (NT) have proposed an approximation of the KM method that converts the interval type–2 membership functions to a single type–1 membership function by averaging the upper and lower memberships, and then applies a type–1 centroid defuzzification. In this paper we propose a modification of the NT algorithm which takes into account the uncertainty of the (interval type–2) memberships. We call this method the uncertainty weight (UW) method. Extensive numerical experiments motivated by typical fuzzy controller scenarios compare the KM, NT, and UW methods. The experiments show that (i) in many cases NT can be considered a good approximation of KM with much lower computational complexity, but not for highly unbalanced uncertainties, and (ii) UW yields more reasonable results than KM and NT if more certain decision alternatives should obtain a larger weight than more uncertain alternatives.en
dc.explorer.multimediaNoen
dc.funderN/Aen
dc.identifier.citationRunkler, T.A., Coupland, S., John R. and Chen C. (2018) Interval Type–2 Defuzzification Using Uncertainty Weights. In: Mostaghim S., Nürnberger A., Borgelt C. (eds) Frontiers in Computational Intelligence. Studies in Computational Intelligence, 739. Springer, Chamen
dc.identifier.doihttps://doi.org/10.1007/978-3-319-67789-7_4
dc.identifier.urihttp://hdl.handle.net/2086/14806
dc.language.isoenen
dc.projectidN/Aen
dc.publisherSpringeren
dc.researchgroupCentre for Computational Intelligenceen
dc.researchinstituteInstitute of Artificial Intelligence (IAI)en
dc.subjectFuzzy Logicen
dc.titleInterval Type-2 Defuzzification Using Uncertainty Weightsen
dc.typeBook chapteren

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
type2defuz_v4.pdf
Size:
669.72 KB
Format:
Adobe Portable Document Format
Description:
Main Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.2 KB
Format:
Item-specific license agreed upon to submission
Description: