Rapid prediction of NMR spectral properties with quantified uncertainty

dc.cclicenceCC-BYen
dc.contributor.authorKuhn, Stefan
dc.contributor.authorJonas, Eric
dc.date.acceptance2018-07-29
dc.date.accessioned2019-08-15T09:23:26Z
dc.date.available2019-08-15T09:23:26Z
dc.date.issued2019-08-06
dc.descriptionopen access articleen
dc.description.abstractAccurate calculation of specific spectral properties for NMR is an important step for molecular structure elucidation. Here we report the development of a novel machine learning technique for accurately predicting chemical shifts of both 1H and 13C nuclei which exceeds DFT-accessible accuracy for 13C and 1H for a subset of nuclei, while being orders of magnitude more performant. Our method produces estimates of uncertainty, allowing for robust and confident predictions, and suggests future avenues for improved performance.en
dc.funderNo external funderen
dc.identifier.citationJonas, E. and Kuhn, S. (2019) Rapid prediction of NMR spectral properties with quantified uncertainty. Journal of Cheminformatics 11, 50en
dc.identifier.doihttps://doi.org/10.1186/s13321-019-0374-3
dc.identifier.urihttps://www.dora.dmu.ac.uk/handle/2086/18337
dc.language.isoen_USen
dc.peerreviewedYesen
dc.publisherSpringeren
dc.researchinstituteCyber Technology Institute (CTI)en
dc.subjectNMRen
dc.subjectMachine learningen
dc.subjectDFTen
dc.titleRapid prediction of NMR spectral properties with quantified uncertaintyen
dc.typeArticleen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rapidprediction.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.2 KB
Format:
Item-specific license agreed upon to submission
Description: