Spatiotemporal algebraically localized waveforms for a nonlinear Schrödinger model with gain and loss

dc.cclicenceCC-BY-NCen
dc.contributor.authorAnastassi, Zachariasen
dc.contributor.authorFotopoulos, G.en
dc.contributor.authorFrantzeskakis, D. J.en
dc.contributor.authorHorikis, T. P.en
dc.contributor.authorKarachalios, N. I.en
dc.contributor.authorKevrekidis, P. G.en
dc.contributor.authorStratis, I. G.en
dc.contributor.authorVetas, K.en
dc.date.acceptance2017-06-11en
dc.date.accessioned2018-10-11T09:31:04Z
dc.date.available2018-10-11T09:31:04Z
dc.date.issued2017-06-27
dc.descriptionThe file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.en
dc.description.abstractWe consider the asymptotic behavior of the solutions of a nonlinear Schrödinger (NLS) model incorporating linear and nonlinear gain/loss. First, we describe analytically the dynamical regimes (depending on the gain/loss strengths), for finite-time collapse, decay, and global existence of solutions. Then, for all the above parametric regimes, we use direct numerical simulations to study the dynamics corresponding to algebraically decaying initial data. We identify crucial differences between the dynamics of vanishing initial conditions, and those converging to a finite constant background: in the former (latter) case we find strong (weak) collapse or decay, when the gain/loss parameters are selected from the relevant regimes. One of our main results, is that in all the above regimes, non-vanishing initial data transition through spatiotemporal, algebraically decaying waveforms. While the system is nonintegrable, the evolution of these waveforms is reminiscent to the evolution of the Peregrine rogue wave of the integrable NLS limit. The parametric range of gain and loss for which this phenomenology persists is also touched upon.en
dc.exception.ref2021codes252cen
dc.funderQatar National Research Funden
dc.funderGreek Diaspora Fellowship Programen
dc.identifier.citationAnastassi, Z.A., Fotopoulos, G., Frantzeskakis, D.J., Horikis, T.P., Karachalios, N.I., Kevrekidis, P.G., Stratis, I.G. and Vetas, K. (2017) Spatiotemporal algebraically localized waveforms for a nonlinear Schrödinger model with gain and loss. Physica D, 355, pp. 24-33.en
dc.identifier.doihttps://doi.org/10.1016/j.physd.2017.06.003
dc.identifier.issn0167-2789
dc.identifier.urihttp://hdl.handle.net/2086/16718
dc.language.isoenen
dc.peerreviewedYesen
dc.projectidNPRP grant # [8-764-160]en
dc.publisherElsevieren
dc.researchinstituteInstitute of Artificial Intelligence (IAI)en
dc.subjectNLS equationen
dc.subjectGain/lossen
dc.subjectRogue wavesen
dc.subjectNonlinear opticsen
dc.subjectComputer simulationen
dc.titleSpatiotemporal algebraically localized waveforms for a nonlinear Schrödinger model with gain and lossen
dc.typeArticleen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RGL_v28.pdf
Size:
1007.8 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.2 KB
Format:
Item-specific license agreed upon to submission
Description: