RDTIDS: Rules and Decision Tree-based Intrusion Detection System for Internet -of-things networks

Date

2020-03-02

Advisors

Journal Title

Journal ISSN

ISSN

Volume Title

Publisher

MDPI

Type

Article

Peer reviewed

Yes

Abstract

This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs features of the data set, and classify the network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition to the outputs of the first and the second classifier as inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 dataset and BoT-IoT dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art existing schemes. View Full-Text

Description

open access article

Keywords

Cyber Security

Citation

Ferrag, M.A., Maglaras, L., Ahmin, A., Derdour, M., Janicke, H. (2020) RDTIDS: Rules and Decision Tree-based Intrusion Detection System for Internet -of-things networks. Future Internet, 12(3), 44.

Rights

Research Institute

Cyber Technology Institute (CTI)