Type-1 OWA Operators in Aggregating Multiple Sources of Uncertain Information: Properties and Real-World Applications in Integrated Diagnosis.

Date

2021-05-06

Advisors

Journal Title

Journal ISSN

ISSN

Volume Title

Publisher

IEEE

Type

Article

Peer reviewed

Yes

Abstract

The type-1 ordered weighted averaging (T1OWA) operator has demonstrated the capacity for directly aggregating multiple sources of linguistic information modeled by fuzzy sets rather than crisp values. Yager's ordered weighted averaging (OWA) operators possess the properties of idempotence, monotonicity, compensativeness, and commutativity . This article aims to address whether or not T1OWA operators possess these properties when the inputs and associated weights are fuzzy sets instead of crisp numbers. To this end, a partially ordered relation of fuzzy sets is defined based on the fuzzy maximum ( join ) and fuzzy minimum ( meet ) operators of fuzzy sets, and an alpha-equivalently-ordered relation of groups of fuzzy sets is proposed. Moreover, as the extension of orness and andness of an Yager's OWA operator, joinness and meetness of a T1OWA operator are formalized, respectively. Then, based on these concepts and the representation theorem of T1OWA operators , we prove that T1OWA operators hold the same properties as Yager's OWA operators possess, i.e., idempotence, monotonicity, compensativeness, and commutativity . Various numerical examples and a case study of diabetes diagnosis are provided to validate the theoretical analyses of these properties in aggregating multiple sources of uncertain information and improving integrated diagnosis, respectively.

Description

The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.

Keywords

Citation

Zhou, S., Chiclana, F., John, R., Garibaldi, J. and Huo, L. (2021) Type-1 OWA Operators in Aggregating Multiple Sources of Uncertain Information: Properties and Real-World Applications in Integrated Diagnosis. IEEE Transactions on Fuzzy Systems, 29, (8), pp. 2112-2121

Rights

Research Institute