Uncertainty-Aware Reservoir Permeability Prediction using Gaussian Processes Regression and NMR Measurements
Date
Advisors
Journal Title
Journal ISSN
ISSN
DOI
Volume Title
Publisher
Type
Peer reviewed
Abstract
This study investigates the challenges of permeability prediction in reservoir engineering, focusing on addressing uncertainties inherent in the data and modelling process, and leveraging Nuclear Magnetic Resonance (NMR) log data from the Northern Sea Volve field. The study uses a probabilistic machine learning method called Gaussian Process Regression (GPR) with different kernels, such as Matern52, Matern32, and Radial Basis Function (RBF). LSboost, K-nearest neighbour (KNN), and XGBoost are some of the existing models that are used for comparison. Performance metrics including Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of determination (