Impaired endogenous fibrinolysis at high shear using a point-of-care test in STEMI is associated with alterations in clot architecture
Date
Advisors
Journal Title
Journal ISSN
ISSN
0929-5305
Volume Title
Publisher
Type
Peer reviewed
Abstract
Impaired endogenous fibrinolysis is an adverse prognostic biomarker in acute coronary syndrome (ACS). Abnormally dense in vitro fibrin thrombi have been demonstrated in ACS patients and related to hypofibrinolysis using cumbersome, laboratory-based methods. We aimed to assess endogenous fibrinolysis using a point-of-care technique and relate this to clot architecture. From patients with ST-segment elevation myocardial infarction (STEMI), venous blood was drawn immediately on arrival to assess thrombotic status. Blood was assessed using the point-of-care Global Thrombosis Test which measures occlusive thrombus formation under high shear and subsequently endogenous fibrinolysis (lysis time, LT). Two samples per patient were run in parallel. In one channel, the measurement was allowed to proceed as normal. In the other, after occlusion, thrombus was extracted, washed, fixed in glutaraldehyde, dried, sputter-coated, and assessed using scanning electron microscope. Endogenous fibrinolysis was strongly associated fibrin fibre thickness (p = 0.0001). As LT increased (less efficient fibrinolysis), the fibrin network of the thrombus was significantly more compact and dense, with thinner fibrin fibres and smaller gaps. Fibrin fibre thickness correlated inversely with LT (r = − 0.89, p = 0.001). Adverse clot architecture in vitro is directly related to impaired endogenous fibrinolysis using a relatively new point-of-care technique in patients with STEMI. This may transform the relevance of fibrin clot architecture from an off-line laboratory association to being directly relevant to endogenous fibrinolysis at the patient bedside, which could be used as a near-patient test to guide prognosis and assess the effect of treatment.