Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
We construct the complete network of tail risk spillovers among major cryptocurrencies using the Least Absolute Shrinkage and Selection Operator (LASSO) quantile regression. We capture important features of the network, including major risk-driving and major risk-receiving currencies, and the evolution of the tail dependence among the currencies over time. Importantly, we reveal a striking finding that the right tail dependence among the cryptocurrencies is significantly stronger than the left tail counterpart. This unique characteristic may have contributed to the rise in popularity of cryptocurrencies over the last few years. Our portfolio analysis reveals that diversification in cryptocurrency investment can be accomplished simply by employing the naïve equal-weighted scheme even when transaction costs are taken into account.