A coevolutionary algorithm with detection and supervision strategy for constrained multiobjective optimization
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Balancing objectives and constraints is challenging in addressing constrained multiobjective optimization problems (CMOPs). Existing methods may have limitations in handling various CMOPs due to the complex geometries of the Pareto front (PF). And the complexity arises from the constraints that narrow the feasible region. Categorizing problems based on their geometric characteristics facilitates facing this challenge. For this purpose, this article proposes a novel constrained multiobjective optimization framework with detection and supervision phases, called COEA-DAS. The framework categorizes the problems into four types based on the overlap between the obtained approximate unconstrained PF and constrained PF to guide the coevolution of the two populations. In the detection phase, the detection population approaches the unconstrained PF ignoring the constraints. The main population is guided by the detection population to cross infeasible barriers and approximate the constrained PF. In the supervision phase, specialized evolutionary mechanisms are designed for each possible problem type. The detection population maintains evolution to assist the main population in spreading along the constrained PF. Meanwhile, the supervision strategy is conducted to reevaluate the problem types based on the evolutionary state of the populations. This idea of balancing constraints and objectives based on the type of problem provides a novel approach for more effectively addressing the CMOPs. Experimental results indicate that the proposed algorithm performs better or more competitively on 57 benchmark problems and 12 real-world CMOPs compared with eight state-of-the-art algorithms.