Fuzzy in 3-D: Two Contrasting Paradigms




Journal Title

Journal ISSN


ISSN 2341-0183


Volume Title


European Centre for Soft Computing



Peer reviewed



Type-2 fuzzy sets and complex fuzzy sets are both three dimensional extensions of type-1 fuzzy sets. Complex fuzzy sets come in two forms, the standard form, postulated in 2002 by Ramot et al., and the 2011 innovation of pure complex fuzzy sets, proposed by Tamir et al.. In this paper we compare and contrast both forms of complex fuzzy set with type-2 fuzzy sets, as regards their rationales, applications, definitions, and structures. In addition, pure complex fuzzy sets are compared with type-2 fuzzy sets in relation to their inferencing operations. Complex fuzzy sets and type-2 fuzzy sets differ in their roles and applications; complex fuzzy sets are pertinent to inferencing where there is seasonality, and type-2 fuzzy sets are applicable to reasoning under uncertainty. Their definitions differ also, though there is equivalence between those of a pure complex fuzzy set and a type-2 fuzzy set. Structural similarity is evident between these three- dimensional sets. Complex fuzzy sets are represented by a 3–D line, and type- 2 fuzzy sets by a 3–D surface, but a surface is simply a generalisation of a line. This similarity is particularly apparent between pure complex fuzzy sets and type- 2 fuzzy sets, which are both mappings from the domain onto the unit square. However type-2 fuzzy sets were found not to be isomorphic to pure complex fuzzy sets.

The mechanisms by which complex fuzzy sets model and quantify periodicity, and type-2 fuzzy sets model and quantify uncertainty are discussed. A type-2 fuzzy set can be represented as the union of its type-2 embedded set. An embedded type-2 fuzzy set is a type-2 fuzzy set in itself, whose geomet- rical representation is a 3-D line. Thus, geometrically an embedded type-2 fuzzy set can be seen as equivalent to a pure complex fuzzy set and therefore a type-2 fuzzy set can be represented as the union of a collection pure complex fuzzy sets, which in turn can be regarded as embedded complex fuzzy sets of a type-2 fuzzy set. This relationship is exploited to provide a complex definition of a type-2 fuzzy set.


DIGITS The full text of this article can be read via open access on the publisher's page.



Greenfield, S. and Chiclana, F. (2015) Fuzzy in 3-D: Two Contrasting Paradigms. Archives for the Philosophy and History of Soft Computing Vol 2


Research Institute

Institute of Artificial Intelligence (IAI)