Tri-Needle Coaxial Electrospray Engineering of Magnetic Polymer Yolk–Shell Particles Possessing Dual-Imaging Modality, Multiagent Compartments, and Trigger Release Potential

Date

2017-06-07

Advisors

Journal Title

Journal ISSN

ISSN

Volume Title

Publisher

ACS Publications

Type

Article

Peer reviewed

Yes

Abstract

Particulate platforms capable of delivering multiple actives as well as providing diagnostic features have gained considerable interest over the last few years. In this study, magnetic polymer yolk–shell particles (YSPs) were engineered using a tri-needle coaxial electrospraying technique enabling dual-mode (ultrasonic and magnetic resonance) imaging capability with specific multidrug compartments via an advanced single-step encapsulation process. YSPs comprised magnetic Fe3O4 nanoparticles (MNPs) embedded in the polymeric shell, an interfacing oil layer, and a polymeric core (i.e., composite shell–oil interface–polymeric core). The frequency of the ultrasound backscatter signal was modulated through YSP loading dosage, and both T1- and T2-weighted magnetic resonance imaging signal intensities were shown to decrease with increasing MNP content (YSP outer shell). Three fluorescent dyes (selected as model probes with varying hydrophobicities) were coencapsulated separately to confirm the YSP structure. Probe release profiles were tuned by varying power or frequency of an external auxiliary magnetic field (AMF, 0.7 mT (LAMF) or 1.4 mT (HAMF)). In addition, an “inversion” phenomenon for the AMF-enhanced drug release process was studied and is reported. A low YSP cytotoxicity (5 mg/mL) and biocompatibility (murine, L929) was confirmed. In summary, magnetic YSPs demonstrate timely potential as multifunctional theranostic agents for dual-imaging modality and magnetically controlled coactive delivery.

Description

The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.

Keywords

Citation

Zhang, C. et al. (2017) Tri-Needle Coaxial Electrospray Engineering of Magnetic Polymer Yolk–Shell Particles Possessing Dual-Imaging Modality, Multiagent Compartments, and Trigger Release Potential. Applied Materials and Interfaces, 9 (25), pp. 21485-21495

Rights

Research Institute

Leicester Institute for Pharmaceutical Innovation - From Molecules to Practice (LIPI)