Adaptive unicast video streaming with rateless codes and feedback.
Files
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Video streaming over the Internet and packet-based wireless networks is sensitive to packet loss, which can severely damage the quality of the received video. To protect the transmitted video data against packet loss, application-layer forward error correction (FEC) is commonly used. Typically, for a given source block, the channel code rate is fixed in advance according to an estimation of the packet loss rate. However, since network conditions are difficult to predict, determining the right amount of redundancy introduced by the channel encoder is not obvious. To address this problem, we consider a general framework where the sender applies rateless erasure coding to every source block and keeps on transmitting the encoded symbols until it receives an acknowledgment from the receiver indicating that the block was decoded successfully. Within this framework, we design transmission strategies that aim at minimizing the expected bandwidth usage while ensuring successful decoding subject to an upper bound on the packet loss rate. In real simulations over the Internet, our solution outperformed standard FEC and hybrid ARQ approaches. For the QCIF Foreman sequence compressed with the H.264 video coder, the gain in average peak signal to noise ratio over the best previous scheme exceeded 3.5 decibels at 90 kilobits per second.