A graph model with minimum cost to support conflict resolution and mediation in technology transfer of new product co-development.
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
Successful new product development advocate for collaboration among different institutions in which technology transfer dispute widely exists. Although several studies have discussed conflict modelling and resolution in technology transfer dispute, scant research attempted to model third-party (or mediator) mediation, let alone develop effective approaches to minimize cost in the conflict resolution process. This study uses a graph model and minimum cost to investigate the conflict resolution and mediation in technology transfer dispute of new product collaborative development. On the one hand, the conflict in technology transfer of new product collaborative development is modelled using the graph model theory, in which the stakeholders (or decision-makers), their options, the feasible states, and the preferences of decision-makers are analyzed. On the other hand, an inverse graph model with minimum cost is designed to tackle the problem of specifying which decision-makers’ preferences lead to a desired solution, thereby making it easier for a mediator or other third party to influence the course of the conflict. In the inverse graph model with minimum cost, two 0-1 mixed linear approaches are constructed to judge the Nash and General Merataionality stabilities within the graph model, and several optimization-based models that minimize mediation cost are designed for the mediator to guide the technology transfer conflict resolution process to achieve the desired solution. Finally, the proposed methodology is applied to a technology transfer dispute case study.