Non-stationary problem optimization using the primal-dual genetic algorithm

Date

2003

Advisors

Journal Title

Journal ISSN

ISSN

DOI

Volume Title

Publisher

IEEE

Type

Conference

Peer reviewed

Yes

Abstract

Genetic algorithms (GAs) have been widely used for stationary optimization problems where the fitness landscape does not change during the computation. However, the environments of real world problems may change over time, which puts forward serious challenge to traditional GAs. In this paper, we introduce the application of a new variation of GA called the primal-dual genetic algorithm (PDGA) for problem optimization in nonstationary environments. Inspired by the complementarity and dominance mechanisms in nature, PDGA operates on a pair of chromosomes that are primal-dual to each other in the sense of maximum distance in genotype in a given distance space. This paper investigates an important aspect of PDGA, its adaptability to dynamic environments. A set of dynamic problems are generated from a set of stationary benchmark problems using a dynamic problem generating technique proposed in this paper. Experimental study over these dynamic problems suggests that PDGA can solve complex dynamic problems more efficiently than traditional GA and a peer GA, the dual genetic algorithm. The experimental results show that PDGA has strong viability and robustness in dynamic environments.

Description

Keywords

Citation

Yang, S. (2003) Non-stationary problem optimization using the primal-dual genetic algorithm. Proceedings of the 2003 IEEE Congress on Evolutionary Computation, 3, pp. 2246-2253

Rights

Research Institute