Remaining service life prediction based on gray model and empirical Bayesian with applications to compressors and pumps
Date
Advisors
Journal Title
Journal ISSN
ISSN
Volume Title
Publisher
Type
Peer reviewed
Abstract
In this study, a three-step remaining service life (RSL) prediction method, which involves feature extraction, feature selection, and fusion and prognostics, is proposed for large-scale rotatingmachinery in the presence of scarce failure data. In the feature extraction step, eight time-domain degradation features are extracted from the faulty variables. A fitness function as a weighted linear combination of the monotonicity, robustness, correlation, and trendabilitymetrics is defined and used to evaluate the suitability of the features for RSL prediction. The selected features are merged using a canonical variate residuals-based method. In the prognostic step, graymodel is used in combinationwith empirical Bayesian algorithm for RSL prediction in the presence of scarce failure data. The proposed approach is validated on failure data collected froman operational industrial centrifugal pump and a compressor.