Understanding why fat, oil and grease (FOG) bioremediation can be unsuccessful

Date

2020-05-01

Advisors

Journal Title

Journal ISSN

ISSN

Volume Title

Publisher

Elsevier

Type

Article

Peer reviewed

Yes

Abstract

Commercial kitchen wastewaters are typically strong organic and fat-rich effluents, often identified as major contributors to fatberg formation and associated blockages in sewers. Experimental trials were done using synthetic kitchen wastewater to understand the complex reactions involved in microbial remediation in grease traps/separators prior discharge in sewers. The principle organic components (FOG, carbohydrate and protein nitrogen), were varied using ranges observed in a previous study on real kitchen wastewater characterisation. A model bacterium, Bacillus licheniformis NCIMB 9375, was used to evaluate microbial utilisation of the different organic fractions in relation to fat, oil and grease (FOG) degradation. Novel results in the treatment of these effluents showed that, the presence and concentration of alternative carbon sources and the ratio of carbon to nitrogen (COD:N) had great influence on FOG-degradation response. For example, FOG removal decreased from 24 to 10 mg/l/h when glucose was substitute for starch at equivalent concentrations (500mg/l); and from 26 to 5 mg/l/h when initial COD:N increased from 45:1 to 147:1. The dominant influence of COD:N was validated using a commercial bioadditive and real kitchen wastewater adjusted to different COD:N ratios, confirming the strong influence of kitchen wastewater composition on bioremediation outcomes. These results can therefore have major implications for biological management of FOG in kitchens and sewers as they provide a scientific explanation for bioremediation success or failure.

Description

The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.

Keywords

bioadditives, bioadditions, kitchen wastewater, FOG, fatberg, lipids

Citation

Gurd C., Jefferson B. and Villa R. (2020) Understanding why fat, oil and grease (FOG) bioremediation can be unsuccessful. Journal of Environmental Management, 267: 110647

Rights

Research Institute

Institute of Energy and Sustainable Development (IESD)